Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors

Nano Energy - Tập 15 - Trang 9-23 - 2015
Pin Hao1,2, Zhenhuan Zhao2, Yanhua Leng2, Jian Tian2, Yuanhua Sang2, Robert I. Boughton3, Ching‐Ping Wong1, Hong Liu4,2, Bin Yang5
1School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30032, USA
2State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
3Department of Physics and Astronomy, Green State University, Bowling Green, OH 43403, USA
4Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100864, PR China
5Division of Advanced Materials, High Technology R&D Center, Ministry of Science & Technology, Beijing 100044, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sharma, 2010, Energy Convers. Manage., 51, 2901, 10.1016/j.enconman.2010.06.031

Zhu, 2011, Science, 332, 1537, 10.1126/science.1200770

Liu, 2010, Nano Lett., 10, 4863, 10.1021/nl102661q

Sun, 2014, Nano Energy, 4, 56, 10.1016/j.nanoen.2013.12.006

Xu, 2010, ACS Nano, 4, 5019, 10.1021/nn1006539

Zhang, 2013, Nano Energy, 2, 586, 10.1016/j.nanoen.2013.07.008

Zheng, 2014, J. Power Sources, 258, 290, 10.1016/j.jpowsour.2014.01.056

Candelaria, 2012, Nano Energy, 1, 195, 10.1016/j.nanoen.2011.11.006

Li, 2008, J. Non-Cryst. Solids, 354, 19, 10.1016/j.jnoncrysol.2007.07.024

Cheng, 2011, J. Phys. Chem. C, 115, 23584, 10.1021/jp203852p

Yan, 2010, J. Power Sources, 195, 3041, 10.1016/j.jpowsour.2009.11.028

Liu, 2010, Nano Lett., 10, 4863, 10.1021/nl102661q

Guo, 2011, Energy Environ. Sci., 4, 4504, 10.1039/c1ee01676h

Zhang, 2009, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j

Inagaki, 2010, J. Power Sources, 195, 7880, 10.1016/j.jpowsour.2010.06.036

Ma, 2014, Nano Lett., 14, 1944, 10.1021/nl404801t

Cao, 2014, Energy Environ. Sci., 7, 1850, 10.1039/C4EE00050A

Cao, 2011, Small, 7, 3163, 10.1002/smll.201100990

Sun, 2014, Angew. Chem., 53, 12576, 10.1002/anie.201405325

Chen, 2011, Adv. Mater., 23, 5679, 10.1002/adma.201102838

Qian, 2014, Carbon, 68, 221, 10.1016/j.carbon.2013.10.082

Choi, 2012, Nano Energy, 1, 534, 10.1016/j.nanoen.2012.05.001

Zhu, 2014, Small, 10, 3480, 10.1002/smll.201303202

Huang, 2012, Chem. Soc. Rev., 41, 666, 10.1039/C1CS15078B

Chen, 2012, ACS Nano, 6, 7092, 10.1021/nn302147s

Wang, 2013, Nano Energy, 2, 294, 10.1016/j.nanoen.2012.10.001

Primo, 2012, Chem. Commun., 48, 9254, 10.1039/c2cc34978g

Andrzej Olejniczak, 2013, J. Mater. Chem. A, 1, 8961, 10.1039/c3ta11337j

Yu, 2014, Adv. Mater., 26, 810, 10.1002/adma.201303662

Niu, 2013, Electrochim. Acta, 108, 666, 10.1016/j.electacta.2013.07.025

Chen, 2013, Nano Energy, 2, 249, 10.1016/j.nanoen.2012.09.003

Zhu, 2010, Adv. Mater., 22, 3906, 10.1002/adma.201001068

Zhou, 2011, Nanotechnology, 22, 045704, 10.1088/0957-4484/22/4/045704

Ramachandran, 2013, Mater. Res. Bull., 48, 3834, 10.1016/j.materresbull.2013.05.085

Bichat, 2010, Carbon, 48, 4351, 10.1016/j.carbon.2010.07.049

Inganäs, 2014, Adv. Mater., 26, 830, 10.1002/adma.201302524

Wang, 2013, J. Power Sources, 225, 101, 10.1016/j.jpowsour.2012.10.022

Lv, 2012, J. Power Sources, 209, 152, 10.1016/j.jpowsour.2012.02.089

Pandiselvi, 2013, Ionics, 20, 551, 10.1007/s11581-013-1020-0

Hassan, 2012, Innovative Eng. Syst., 64

Hassan, 2014, J. Power Sources, 246, 68, 10.1016/j.jpowsour.2013.06.085

Ji, 2013, J. Colloid Interface Sci., 407, 416, 10.1016/j.jcis.2013.06.054

Pandiselvi, 2014, Ionics, 20, 551, 10.1007/s11581-013-1020-0

Kumar, 2009, J. Appl. Polym. Sci., 114, 2445, 10.1002/app.30716

Yamagata, 2013, Electrochim. Acta, 100, 275, 10.1016/j.electacta.2012.05.073

Hao, 2014, Nanoscale, 6, 12120, 10.1039/C4NR03574G

Demarconnay, 2010, Electrochem. Commun., 12, 1275, 10.1016/j.elecom.2010.06.036

Jänes, 2007, Carbon, 45, 1226, 10.1016/j.carbon.2007.01.024

Reina, 2008, Nano Lett., 9, 30, 10.1021/nl801827v

Subrahmanyam, 2008, J. Math. Chem., 18, 1517, 10.1039/b716536f

Graf, 2007, Nano Lett., 7, 238, 10.1021/nl061702a

Schniepp, 2006, J. Phys. Chem. B, 110, 8535, 10.1021/jp060936f

De Heer, 2007, Solid State Commun., 143, 92, 10.1016/j.ssc.2007.04.023

Weingarth, 2014, Adv. Energy Mater., 1400316, 10.1002/aenm.201400316

Olejniczak, 2013, J. Mater. Chem. A, 1, 8961, 10.1039/c3ta11337j

Dacheng Wei, 2009, Nano Lett., 8, 1752

Arenillas, 2005, J. Anal. Appl. Pyrolysis, 74, 298, 10.1016/j.jaap.2004.11.020

Wang, 2013, J. Power Sources, 225, 101, 10.1016/j.jpowsour.2012.10.022

Zhi, 2013, Nanoscale, 5, 72, 10.1039/C2NR32040A

Kumar, 2000, React. Funct. Polym., 46, 1, 10.1016/S1381-5148(00)00038-9

Stavropoulos, 2005, Fuel Process. Technol., 86, 1165, 10.1016/j.fuproc.2004.11.011

Vivekchand, 2008, J. Chem. Sci., 120, 9, 10.1007/s12039-008-0002-7

Sun, 2011, Energy Environ. Sci., 4, 1113, 10.1039/c0ee00683a

Wu, 2012, Adv. Mater., 24, 5130, 10.1002/adma.201201948

Chen, 2011, Nanoscale, 3, 3132, 10.1039/c1nr10355e

Yan, 2010, Carbon, 48, 1731, 10.1016/j.carbon.2010.01.014

Qiu, 2011, Phys. Chem. Chem. Phys., 13, 12554, 10.1039/c1cp21148j

Wang, 2009, Science, 324, 768, 10.1126/science.1170335

Guo, 2010, Nano Lett., 10, 4975, 10.1021/nl103079j

Su, 2011, Energy Environ. Sci., 4, 717, 10.1039/C0EE00277A

Hulicova-Jurcakova, 2009, Adv. Funct. Mater., 19, 1800, 10.1002/adfm.200801100

Hulicova-Jurcakova, 2009, Adv. Funct. Mater., 19, 438, 10.1002/adfm.200801236

Fan, 2011, J. Mater. Chem., 21, 18753, 10.1039/c1jm13214h

Hsieh, 2002, Carbon, 40, 667, 10.1016/S0008-6223(01)00182-8

Stoller, 2010, Energy Environ. Sci., 3, 1294, 10.1039/c0ee00074d

Khomenko, 2005, Electrochim. Acta, 50, 2499, 10.1016/j.electacta.2004.10.078

Yang, 2014, Carbon, 72, 381, 10.1016/j.carbon.2014.02.029

Wen, 2012, Adv. Mater., 24, 5610, 10.1002/adma.201201920