Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Healy DA, Hayes CJ, Leonard P, McKenna L, O’Kennedy R (2007) Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol 25:125–131
Kim EH, Andriole GL (2018) Prostate cancer review. Mo Med 115:131
Pettersson A, Robinson D, Garmo H, Holmberg L, Stattin P (2018) Age at diagnosis and prostate cancer treatment and prognosis: a population-based cohort study. Ann Oncol 29:377–385
Lemanska A, Dearnaley DP, Jena R, Sydes MR, Faithfull S (2018) Older age, early symptoms and physical function are associated with the severity of late symptom clusters for men undergoing radiotherapy for prostate cancer. Clin Oncol (R Coll Radiol) 30:334–345
Pernar CH, Ebot EM, Wilson KM, Mucci LA (2018) The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a030361
Sammon JD, Serrell EC, Karabon P, Leow JJ, Abdollah F, Weissman JS, Han PKJ, Hansen M, Menon M, Trinh QD (2018) Prostate cancer screening in early medicaid expansion states. J Urol 199:81–88
Carroll PR, Parsons JK, Andriole G, Bahnson RR, Castle EP, Catalona WJ, Dahl DM, Davis JW, Epstein JI, Etzioni RB, Farrington T, Hemstreet GP, Kawachi MH, Kim S, Lange PH, Loughlin KR, Lowrance W, Maroni P, Mohler J, Morgan TM, Moses KA, Nadler RB, Poch M, Scales C, Shaneyfelt TM, Smaldone MC, Sonn G, Sprenkle P, Vickers AJ, Wake R, Shead DA, Freedman-Cass DA (2016) Prostate cancer early detection, version 2.2016. J Natl Compr Cancer Netw 14:509–519
Partin AW (2013) Early detection of prostate cancer continues to support rational, limited screening. J Urol 190:427–428
Cremers RG, Eeles RA, Bancroft EK, Ringelberg-Borsboom J, Vasen HF, Van Asperen CJ, Committee IS, Schalken JA, Verhaegh GW, Kiemeney LA (2015) The role of the prostate cancer gene 3 urine test in addition to serum prostate-specific antigen level in prostate cancer screening among breast cancer, early-onset gene mutation carriers. Urol Oncol 33:202 e19-e28
Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983
Ordonez NG (2014) Value of podoplanin as an immunohistochemical marker in tumor diagnosis: a review and update. Appl Immunohistochem Mol Morphol 22:331–347
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang YX, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao YC, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SKN, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih IM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie JN, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing DM, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Luis AJ (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24
Isbell JM, Jones DR, Li BT (2018) Circulating tumor DNA: A promising biomarker to guide postoperative treatment and surveillance of non-small cell lung cancer. J Thorac Cardiovasc Surg 155:2628–2631
Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339:1–9
Monteiro M, Moreira N, Pinto J, Pires-Luis AS, Henrique R, Jeronimo C, Bastos ML, Gil AM, Carvalho M, Guedes de Pinho P (2017) GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell Mol Med 21(9):2092–2105
Natarajan H, Kumar L, Bakhshi S, Sharma A, Velpandian T, Kabra M, Gogia A, Ranjan Biswas N, Gupta YK (2018) Imatinib trough levels: a potential biomarker to predict cytogenetic and molecular response in newly diagnosed patients with chronic myeloid leukemia. Leuk Lymphoma 60:1–8
Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382
Inoue M, Otsuka K, Shibata H (2016) Circulating tumor cell count as a biomarker of a specific gastric cancer subgroup characterized by bone metastasis and/or disseminated intravascular coagulation—an early indicator of chemotherapeutic response. Oncol Lett 11:1294–1298
Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997
Severi G, FitzGerald LM, Muller DC, Pedersen J, Longano A, Southey MC, Hopper JL, English DR, Giles GG, Mills J (2014) A three-protein biomarker panel assessed in diagnostic tissue predicts death from prostate cancer for men with localized disease. Cancer Med 3:1266–1274
Shui B, Tao D, Florea A, Cheng J, Zhao Q, Gu Y, Li W, Jaffrezic-Renault N, Mei Y, Guo Z (2018) Biosensors for Alzheimer’s disease biomarker detection: a review. Biochimie 147:13–24
Lin PY, Cheng KL, McGuffin-Cawley JD, Shieu FS, Samia AC, Gupta S, Cooney M, Thompson CL, Liu CC (2012) Detection of Alpha-Methylacyl-CoA Racemase (AMACR), a biomarker of prostate cancer, in patient blood samples using a nanoparticle electrochemical biosensor. Biosensors (Basel) 2:377–387
Parra-Cabrera C, Samitier J, Homs-Corbera A (2016) Multiple biomarkers biosensor with just-in-time functionalization: application to prostate cancer detection. Biosens Bioelectron 77:1192–1200
Narwal V, Kumar P, Joon P, Pundir CS (2018) Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. Enzyme Microb Technol 113:44–51
Pena-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF (2018) Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol 16:75
Kim J, Park SJ, Min DH (2017) Emerging approaches for graphene oxide biosensor. Anal Chem 89:232–248
Tarro G, Perna A, Esposito C (2005) Early diagnosis of lung cancer by detection of tumor liberated protein. J Cell Physiol 203:1–5
Borrebaeck CA (2017) Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer 17:199–204
Surinova S, Radova L, Choi M, Srovnal J, Brenner H, Vitek O, Hajduch M, Aebersold R (2015) Non-invasive prognostic protein biomarker signatures associated with colorectal cancer. EMBO Mol Med 7:1153–1165
Morin PJ (2005) Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 65:9603–9606
Tang T, Yang C, Brown HE, Huang J (2018) Circulating heat shock protein 70 is a novel biomarker for early diagnosis of lung cancer. Dis Markers 2018:6184162
Jung YJ, Katilius E, Ostroff RM, Kim Y, Seok M, Lee S, Jang S, Kim WS, Choi CM (2017) Development of a protein biomarker panel to detect non-small-cell lung cancer in Korea. Clin Lung Cancer 18:e99–e107
Yang Z, Li DM, Xie Q, Dai DQ (2015) Protein expression and promoter methylation of the candidate biomarker TCF21 in gastric cancer. J Cancer Res Clin Oncol 141:211–220
Zhurauski P, Arya SK, Jolly P, Tiede C, Tomlinson DC, Ko Ferrigno P, Estrela P (2018) Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosens Bioelectron 108:1–8
Arya SK, Kongsuphol P, Park MK (2017) Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum. Biosens Bioelectron 92:542–548
Ray S, Senapati T, Sahu S, Bandyopadhyaya R, Anand R (2018) Design of ultrasensitive protein biosensor strips for selective detection of aromatic contaminants in environmental wastewater. Anal Chem 90:8960–8968
Stamey TA, Ekman PE, Blankenstein MA, Cooper EH, Kontturi M, Lilja H, Oesterling JE, Stenman UH, Turkes A (1994) Tumor markers. In: Consensus conference on diagnosis and prognostic parameters in localized prostate cancer. Stockholm, Sweden, May 12–13, 1993. Scand J Urol Nephrol Suppl 162:73–87. (discussion 115–127)
Bok RA, Small EJ (2002) Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2:918–926
Hernandez J, Thompson IM (2004) Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 101:894–904
Liu N, Liang W, Ma X, Li X, Ning B, Cheng C, Ou G, Wang B, Zhang J, Gao Z (2013) Simultaneous and combined detection of multiple tumor biomarkers for prostate cancer in human serum by suspension array technology. Biosens Bioelectron 47:92–98
Vergho DC, Heine K, Wolff JM (2005) The role of PSA in diagnosis of prostate cancer and its recurrence. Pathologe 26:473–478
Bantis A, Grammaticos P (2012) Prostatic specific antigen and bone scan in the diagnosis and follow-up of prostate cancer. Can diagnostic significance of PSA be increased? Hell J Nucl Med 15:241–246
Perez-Ibave DC, Burciaga-Flores CH, Elizondo-Riojas MA (2018) Prostate-specific antigen (PSA) as a possible biomarker in non-prostatic cancer: a review. Cancer Epidemiol 54:48–55
Polascik TJ, Oesterling JE, Partin AW (1999) Prostate specific antigen: a decade of discovery–what we have learned and where we are going. J Urol 162:293–306
Stamey TA, Caldwell M, McNeal JE, Nolley R, Hemenez M, Downs J (2004) The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years? J Urol 172:1297–1301
Stephan C, Ralla B, Jung K (2014) Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochim Biophys Acta 1846:99–112
Israeli RS, Powell CT, Fair WR, Heston WD (1993) Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 53:227–230
Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261
Wright GL Jr, Haley C, Beckett ML, Schellhammer PF (1995) Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1:18–28
Violet JA, Hofman MS (2017) Prostate-specific membrane antigen from diagnostic to therapeutic target: radionuclide therapy comes of age in prostate cancer. BJU Int 120:310–312
Ristau BT, O’Keefe DS, Bacich DJ (2014) The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research. Urol Oncol 32:272–279
Arsenault F, Beauregard JM, Pouliot F (2018) Prostate-specific membrane antigen for prostate cancer theranostics: from imaging to targeted therapy. Curr Opin Support Palliat Care 12(3):359–365
Afaq A, Bomanji J (2018) Prostate-specific membrane antigen positron emission tomography in the management of recurrent prostate cancer. Br Med Bull 128:37–48
Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, Loda M, Witte ON (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA 95:1735–1740
Yang X, Guo Z, Liu Y, Si T, Yu H, Li B, Tian W (2014) Prostate stem cell antigen and cancer risk, mechanisms and therapeutic implications. Expert Rev Anticancer Ther 14:31–37
Ross S, Spencer SD, Holcomb I, Tan C, Hongo J, Devaux B, Rangell L, Keller GA, Schow P, Steeves RM, Lutz RJ, Frantz G, Hillan K, Peale F, Tobin P, Eberhard D, Rubin MA, Lasky LA, Koeppen H (2002) Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate. Cancer Res 62:2546–2553
Bargao Santos P, Patel HR (2014) Prostate stem cell antigen—novel biomarker and therapeutic target? Expert Rev Anticancer Ther 14:5–7
Marszall MP, Sroka W, Adamowski M, Slupski P, Jarzemski P, Siodmiak J, Odrowaz-Sypniewska G (2015) Engrailed-2 protein as a potential urinary prostate cancer biomarker: a comparison study before and after digital rectal examination. Eur J Cancer Prev 24:51–56
Feng T, Feng D, Shi W, Li X, Ma H (2012) A graphene oxide-peptide fluorescence sensor for proteolytically active prostate-specific antigen. Mol BioSyst 8:1441–1445
Sadlowski C, Balderston S, Sandhu M, Hajian R, Liu C, Tran TP, Conboy MJ, Paredes J, Murthy N, Conboy IM, Aran K (2018) Graphene-based biosensor for on-chip detection of bio-orthogonally labeled proteins to identify the circulating biomarkers of aging during heterochronic parabiosis. Lab Chip 18:3230–3238
Wang L, Zhang Y, Wu A, Wei G (2017) Designed graphene-peptide nanocomposites for biosensor applications: a review. Anal Chim Acta 985:24–40
Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307
Ryoo SR, Yim Y, Kim YK, Park IS, Na HK, Lee J, Jang H, Won C, Hong S, Kim SY, Jeon NL, Song JM, Min DH (2018) High-throughput chemical screening to discover new modulators of microRNA expression in living cells by using graphene-based biosensor. Sci Rep 8:11413
Klukova L, Filip J, Belicky S, Vikartovska A, Tkac J (2016) Graphene oxide-based electrochemical label-free detection of glycoproteins down to aM level using a lectin biosensor. Analyst 141:4278–4282
Xie H, Li YT, Lei YM, Liu YL, Xiao MM, Gao C, Pang DW, Huang WH, Zhang ZY, Zhang GJ (2016) Real-time monitoring of nitric oxide at single-cell level with porphyrin-functionalized graphene field-effect transistor biosensor. Anal Chem 88:11115–11122
Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, Kyotani T, Monthioux M, Park CR, Tascon JMD, Zhang J (2013) All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6
Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors (Basel). https://doi.org/10.3390/s17102161
Tabish TA (2018) Graphene-based materials: the missing piece in nanomedicine? Biochem Biophys Res Commun 504:686–689
Khalilzadeh B, Shadjou N, Afsharan H, Eskandani M, Nozad Charoudeh H, Rashidi MR (2016) Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor. Bioimpacts 6:135–147
Morales-Narvaez E, Merkoci A (2018) Graphene oxide as an optical biosensing platform: a progress report. Adv Mater 31:e1805043
Liu B, Huang PJ, Kelly EY, Liu J (2016) Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Biotechnol J 11:780–787
Yang G, Li L, Lee WB, Ng MC (2018) Structure of graphene and its disorders: a review. Sci Technol Adv Mater 19:613–648
Kumar S, Kumar S, Srivastava S, Yadav BK, Lee SH, Sharma JG, Doval DC, Malhotra BD (2015) Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens Bioelectron 73:114–122
Seifati SM, Nasirizadeh N, Azimzadeh M (2018) Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation. IET Nanobiotechnol 12:417–422
Munief WM, Lu X, Teucke T, Wilhelm J, Britz A, Hempel F, Lanche R, Schwartz M, Law JKY, Grandthyll S, Muller F, Neurohr JU, Jacobs K, Schmitt M, Pachauri V, Hempelmann R, Ingebrandt S (2018) Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosens Bioelectron 126:136–142
Zhang HG, Hu H, Pan Y, Mao JH, Gao M, Guo HM, Du SX, Greber T, Gao HJ (2010) Graphene based quantum dots. J Phys Condens Matter 22:302001
Zeng X, Ma S, Bao J, Tu W, Dai Z (2013) Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing. Anal Chem 85:11720–11724
Zeng L, Wang R, Zhu L, Zhang J (2013) Graphene and CdS nanocomposite: a facile interface for construction of DNA-based electrochemical biosensor and its application to the determination of phenformin. Colloids Surf B Biointerfaces 110:8–14
Li Y, Wang X, Gong J, Xie Y, Wu X, Zhang G (2018) Graphene based nanocomposites for efficient photocatalytic hydrogen evolution: insight into the interface toward separation of photogenerated charges. ACS Appl Mater Interfaces 10:43760–43767
Li D, Zhang W, Yu X, Wang Z, Su Z, Wei G (2016) When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 8:19491–19509
Zhang Y, Shen J, Li H, Wang L, Cao D, Feng X, Liu Y, Ma Y, Wang L (2016) Recent progress on graphene-based electrochemical biosensors. Chem Rec 16:273–294
Korkut S, Roy-Mayhew JD, Dabbs DM, Milius DL, Aksay IA (2011) High surface area tapes produced with functionalized graphene. ACS Nano 5:5214–5222
Liao C, Li Y, Tjong SC (2018) Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 19:3564
Sakhnini LI, Pedersen AK, Ahmadian H, Hansen JJ, Bulow L, Dainiak M (2016) Designing monoclonal antibody fragment-based affinity resins with high binding capacity by thiol-directed immobilisation and optimisation of pore/ligand size ratio. J Chromatogr A 1468:143–153
Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–3526
Zhang J, Sun Y, Xu B, Zhang H, Gao Y, Zhang H, Song D (2013) A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens Bioelectron 45:230–236
Li H, Wei Q, He J, Li T, Zhao Y, Cai Y, Du B, Qian Z, Yang M (2011) Electrochemical immunosensors for cancer biomarker with signal amplification based on ferrocene functionalized iron oxide nanoparticles. Biosens Bioelectron 26:3590–3595
Mao K, Wu D, Li Y, Ma H, Ni Z, Yu H, Luo C, Wei Q, Du B (2012) Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Anal Biochem 422:22–27
Jang HD, Kim SK, Chang H, Choi JW (2015) 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites. Biosens Bioelectron 63:546–551
Xu SJ, Liu Y, Wang TH, Li JH (2011) Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem 83:3817–3823
Wu D, Liu Y, Wang Y, Hu L, Ma H, Wang G, Wei Q (2016) Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci Rep 6:20511
Tu J, Gan Y, Liang T, Hu Q, Wang Q, Ren T, Sun Q, Wan H, Wang P (2018) Graphene FET array biosensor based on ssDNA aptamer for ultrasensitive Hg(2 +) detection in environmental pollutants. Front Chem 6:333
Ray R, Basu J, Gazi WA, Samanta N, Bhattacharyya K, RoyChaudhuri C (2018) Label-free biomolecule detection in physiological solutions with enhanced sensitivity using graphene nanogrids FET biosensor. IEEE Trans Nanobiosci 17:433–442
Sharma B, Kim JS (2018) MEMS based highly sensitive dual FET gas sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 detection. Sci Rep 8:5902
Wang C, Cui X, Li Y, Li H, Huang L, Bi J, Luo J, Ma LQ, Zhou W, Cao Y, Wang B, Miao F (2016) A label-free and portable graphene FET aptasensor for children blood lead detection. Sci Rep 6:21711
Basu J, RoyChaudhuri C (2016) Graphene nanogrids FET immunosensor: signal to noise ratio enhancement. Sensors (Basel) 16:1481
Mukherjee S, Meshik X, Choi M, Farid S, Datta D, Lan Y, Poduri S, Sarkar K, Baterdene U, Huang CE, Wang YY, Burke P, Dutta M, Stroscio MA (2015) A graphene and aptamer based liquid gated FET-like electrochemical biosensor to detect adenosine triphosphate. IEEE Trans Nanobiosci 14:967–972
Farid S, Meshik X, Choi M, Mukherjee S, Lan Y, Parikh D, Poduri S, Baterdene U, Huang CE, Wang YY, Burke P, Dutta M, Stroscio MA (2015) Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens Bioelectron 71:294–299
Kakatkar A, Abhilash TS, De Alba R, Parpia JM, Craighead HG (2015) Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology 26:125502
Kim DJ, Sohn IY, Jung JH, Yoon OJ, Lee NE, Park JS (2013) Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens Bioelectron 41:621–626
Wang Q, Ding Y, Gao F, Jiang S, Zhang B, Ni J, Gao F (2013) A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization. Anal Chim Acta 788:158–164
Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822
Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468
Zhang LQ, Wan S, Jiang Y, Wang YY, Fu T, Liu QL, Cao ZJ, Qiu LP, Tan WH (2017) Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J Am Chem Soc 139(7):2532–2540
Zhang J, Li S, Liu F, Zhou L, Shao N, Zhao X (2015) SELEX aptamer used as a probe to detect circulating tumor cells in peripheral blood of pancreatic cancer patients. PLoS ONE 10:e0121920
Chen C, Zhou S, Cai Y, Tang F (2017) Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precis Oncol 1:37
Sedighian H, Halabian R, Amani J, Heiat M, Amin M, Fooladi AAI (2018) Staggered Target SELEX, a novel approach to isolate non-cross-reactive aptamer for detection of SEA by apta-qPCR. J Biotechnol 286:45–55
Kaur H (2018) Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta Gen Subj 1862:2323–2329
Wang X, Li W, Li Z, Li H, Xu D (2015) A highly sensitive fluorescence turn-on platform with silver nanoparticles aptasening for human platelet-derived growth factor-BB. Talanta 144:1273–1278
Liu J, Zeng J, Tian Y, Zhou N (2017) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 143:182–189
Eissa S, Zourob M (2017) Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci Rep 7:1016
Aliakbarinodehi N, Jolly P, Bhalla N, Miodek A, De Micheli G, Estrela P, Carrara S (2017) Aptamer-based field-effect biosensor for tenofovir detection. Sci Rep 7:44409
Pan LH, Kuo SH, Lin TY, Lin CW, Fang PY, Yang HW (2017) An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosens Bioelectron 89:598–605
Settu K, Liu JT, Chen CJ, Tsai JZ (2017) Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Anal Biochem 534:99–107
Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210
Qu FL, Li T, Yang MH (2011) Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron 26:3927–3931
Hu W, He G, Chen T, Guo CX, Lu Z, Selvaraj JN, Liu Y, Li CM (2014) Graphene oxide-enabled tandem signal amplification for sensitive SPRi immunoassay in serum. Chem Commun 50:2133–2135
Li W, Wu P, Zhang H, Cai C (2012) Signal amplification of graphene oxide combining with restriction endonuclease for site-specific determination of DNA methylation and assay of methyltransferase activity. Anal Chem 84:7583–7590
Liu M, Chen Q, Lai C, Zhang Y, Deng J, Li H, Yao S (2013) A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe(3)O(4)@Au nanoparticles with graphene sheet. Biosens Bioelectron 48:75–81
Wang B, Akiba U, Anzai JI (2017) Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: a review. Molecules 22:1048
Han J, Zhuo Y, Chai YQ, Yuan R, Zhang W, Zhu Q (2012) Simultaneous electrochemical detection of multiple tumor markers based on dual catalysis amplification of multi-functionalized onion-like mesoporous graphene sheets. Anal Chim Acta 746:70–76
Sun G, Zhang L, Zhang Y, Yang H, Ma C, Ge S, Yan M, Yu J, Song X (2015) Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Biosens Bioelectron 71:30–36
Feng JH, Li YY, Li MD, Li FY, Han J, Dong YH, Chen ZW, Wang P, Liu H, Wei Q (2017) A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosens Bioelectron 91:441–448
Sharafeldin M, Bishop GW, Bhakta S, El-Sawy A, Suib SL, Rusling JF (2017) Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosens Bioelectron 91:359–366
Zheng Z, Wu L, Li L, Zong S, Wang Z, Cui Y (2018) Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip. Talanta 188:507–515
Nie Y, Zhang P, Wang H, Zhuo Y, Chai Y, Yuan R (2017) Ultrasensitive electrochemiluminescence biosensing platform for detection of multiple types of biomarkers toward identical cancer on a single interface. Anal Chem 89:12821–12827
Heydari-Bafrooei E, Shamszadeh NS (2017) Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens Bioelectron 91:284–292
Na W, Liu Q, Sui B, Hu T, Su X (2016) Highly sensitive detection of acid phosphatase by using a graphene quantum dots-based forster resonance energy transfer. Talanta 161:469–475