Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications

Journal of Energy Storage - Tập 27 - Trang 101038 - 2020
Satiye Korkmaz1, İ. Afşin Kari̇per2,3
1Karabuk University, Engineering Faculty, Karabük, Turkey
2Erciyes Teknopark, Building 1, No:41, Kayseri, Turkey
3Erciyes University, Education Faculty, Kayseri, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Miller, 2008, Electrochemical capacitors for energy management, Science, 321, 651, 10.1126/science.1158736

Wu, 2012, Three dimensional nitrogen and boron co-doped graphene for high-performance all solid- state supercapacitors, Adv. Mater., 24, 5130, 10.1002/adma.201201948

Wang, 2014, Solid state supercapacitor based on activated carbon cloths exhibits excellent rate capability, Adv. Mater., 26, 2676, 10.1002/adma.201304756

Gong, 2009, Nitrogen-Doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science, 323, 760, 10.1126/science.1168049

Song, 2016, Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates, Nano Energy, 19, 117, 10.1016/j.nanoen.2015.10.004

Wei, 2016, Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors, Chem. Mater., 28, 445, 10.1021/acs.chemmater.5b02336

Biener, 2011, Advanced carbon aerogels for energy applications, Energy Environ. Sci., 4, 656, 10.1039/c0ee00627k

Gao, 2013, Ultra-high-rate all-solid pseudocapacitive electrochemical capacitors, J. Power Sources, 222, 301, 10.1016/j.jpowsour.2012.08.096

Hui, 2014, Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal, Chem. Eng. J., 235, 207, 10.1016/j.cej.2013.09.045

Liu, 2016, Monolithic porous carbon derived from polyvinyl alcohol for electrochemical double layer capacitors, Electrochim. Acta, 188, 175, 10.1016/j.electacta.2015.11.122

Blasi, 2008, Thermal and catalytic decomposition of wood impregnated with sulfur and phosphorus-containing ammonium salts, Polym. Degrad. Stab., 93, 335, 10.1016/j.polymdegradstab.2007.12.003

Li, 2001, Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde, Carbon N Y, 39, 1989, 10.1016/S0008-6223(01)00029-X

Deng, 2017, Three-dimensional nitrogen-doped graphene derived from poly-o-phenylenediamine for high-performance supercapacitors, J. Electroanal. Chem., 787, 103, 10.1016/j.jelechem.2017.01.047

Xu, 2010, Recent progress on manganese dioxide based supercapacitors, J. Mater. Res., 25, 1421, 10.1557/JMR.2010.0211

Yoon, 2001, Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films, J. Power Sources, 101, 126, 10.1016/S0378-7753(01)00484-0

Tang, 2012, A high energy density asymmetric supercapacitor from nano-architectured ni (OH) 2/Carbon nanotube electrodes, Adv. Funct. Mater., 22, 1272, 10.1002/adfm.201102796

Yang, 2013, Cobalt monoxide-doped porous graphitic carbon microspheres for supercapacitor application, Sci. Rep., 3, 2925, 10.1038/srep02925

Nardecchia, 2013, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications, Chem. Soc. Rev., 42, 794, 10.1039/C2CS35353A

Hu, 2014, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, J. Power Source., 270, 106, 10.1016/j.jpowsour.2014.07.063

Xu, 2011, What is the choice for supercapacitors: graphene or graphene oxide?, Energy Environ. Sci., 4, 2826, 10.1039/c1ee01198g

Kim, 2010, Graphene/Polymer nanocomposites, Macromolecules, 43, 6515, 10.1021/ma100572e

Marcano, 2010, Improved synthesis of graphene oxide, Amercan Chem. Soc. ACS Nano, 4, 4806, 10.1021/nn1006368

Ke, 2014, Graphene oxide ımproved thermal and mechanical properties of electrospun methy stearate/polyacrylonitrile from-stable phase cahnge composite nanofibers, J. Therm. Anal. Calorim., 117, 109, 10.1007/s10973-014-3669-7

Wagh, 1999, Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors, Mater. Chem. Phys., 57, 214, 10.1016/S0254-0584(98)00217-X

Du, 2013, A special material or a new state of matter: a review and reconsideration of the aerogel, Materials, 6, 941, 10.3390/ma6030941

Zhu, 2010, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906, 10.1002/adma.201001068

Aegerter, 2011

Menaa, 2010, Silica-based nanoporous sol-gel glasses: from bioencapsulation to protein folding studies’’, Int. J. Nanotechnol., 7, 1, 10.1504/IJNT.2010.029546

Gan, 1997, Preparation and characterization of beta-FeOOH aerogels, Acta Phys. Chim. Sin., 13, 48, 10.3866/PKU.WHXB19970109

Gash, 2001, Use of epoxides in the sol-gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts, Chem. Mater., 13, 999, 10.1021/cm0007611

Gash, 2004, Monolithic nickel (II)-based aerogels using an organic epoxide: the importance of the counterion, J. Non-Cryst. Solids, 350, 145, 10.1016/j.jnoncrysol.2004.06.030

Bi, 2011, Synthesis and characterization of nickel-based monolithic aerogel via sol-gel method, Adv. Mater. Res., 335–336, 368, 10.4028/www.scientific.net/AMR.335-336.368

Baumann, 2005, Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors, Chem. Mater., 17, 395, 10.1021/cm048800m

Baumann, 2005, Facile synthesis of a crystalline, high-surface-area SNO2 aerogel, Adv. Mater., 17, 1546, 10.1002/adma.200500074

Kucheyev, 2007, Electronic structure of chromia aerogels from soft X-ray absorption spectroscopy, J. Appl. Phys., 101, 315, 10.1063/1.2749489

Du, 2011, A versatile sol-gel route to monolithic oxidic gels via polyacrylic acid template, New J. Chem., 35, 1096, 10.1039/c0nj00909a

Ren, 2010, Synthesis of a low-density tantalum oxide tile-like aerogel monolithic, J. Sol-Gel Sci. Technol., 53, 307, 10.1007/s10971-009-2092-1

Frederick, 2009, Fabrication of Ta2O5 aerogel targets for radiation transport experiments using thin film fabrication and laser processing, Fusion Sci. Technol., 55, 499, 10.13182/FST55-4-499

Zhang, 2010, Characterization of monolithic tantalum oxide aerogels using epichlorohydrin as gel initiator, Rare Met. Mater. Eng., 39, 154

Chien, 2012, Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites, Adv. Funct. Mater., 22, 5038, 10.1002/adfm.201201176

Lin, 2011, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material, Adv. Energy Mater., 1, 901, 10.1002/aenm.201100256

Wei, 2010, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process, Adv. Mater., 22, 347, 10.1002/adma.200902175

Back, 2000, Diffusive, supersonic X-ray transport in radiatively heated foam cylinders, Phys. Plasmas, 7, 2126, 10.1063/1.874057

Back, 2006, Underdense radiation sources: moving towards longer wavelengths, J. Phys. IV, 133, 1173

Fournier, 2009, Absolute X-ray yields from laser-irradiated germanium-doped low-density aerogels, Phys. Plasmas, 16, 10.1063/1.3140041

Colvin, 2010, A computational study of X-ray emission from laser-irradiated Ge-doped foams, Phys. Plasmas, 17, 10.1063/1.3460817

Tanabe, 2010, Characterization of heat-wave propagation through laser-driven Ti-doped underdense plasma, High Energy Density Phys, 6, 89, 10.1016/j.hedp.2009.06.006

Girard, 2011, Experimental X-ray characterization of Gekko-XII laser propagation through very low-density aerogels (2–5 mg/cc) creating multi-keV photons from a titanium solid foil, High Energy Density Phys, 7, 285, 10.1016/j.hedp.2011.05.004

Ganeev, 2012, Generation of harmonics of laser radiation in plasmas, Laser Phys. Lett., 9, 175, 10.1002/lapl.201110097

Perez, 2012, Efficient laser-induced 6–8 keV X-ray production from iron oxide aerogel and foil-lined cavity target, Phys. Plasmas, 19, 10.1063/1.4740076

Pekala, 1989, Organic aerogels from the polycondensation of resorcinol with formaldehyd, J. Mater. Sci., 24, 3221, 10.1007/BF01139044

Song, 2015, Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window, Mater Lett, 145, 44, 10.1016/j.matlet.2015.01.040

Chen, 2015, Engineering graphene aerogels with porous carbon of large surface area for flexible all-solid-state supercapacitors, Electrochim. Acta, 165, 92, 10.1016/j.electacta.2015.02.008

Liu, 2015, Hydrothermal self-assembly of manganese dioxide/manganese carbonate/reduced graphene oxide aerogel for asymmetric supercapacitors, Electrochim. Acta, 164, 154, 10.1016/j.electacta.2015.01.223

Lee, 2015, Oxygen group-containing activated carbon aerogel as an electrode material for supercapacitor, Mater. Res. Bull., 70, 209, 10.1016/j.materresbull.2015.04.044

Akena, 2015, High rate capacitive performance of single-walled carbon nanotube aerogels, Nano Energy, 15, 662, 10.1016/j.nanoen.2015.05.028

Yu, 2015, Functionalized graphene aerogel composites for high-performance asymmetric supercapacitor, Nano Energy, 11, 611, 10.1016/j.nanoen.2014.11.030

Tingting, 2016, Nitrogen and sulphur-functionalized multiple graphene aerogel for supercapacitors with excellent electrochemical performance, Electrochim. Acta, 187, 143, 10.1016/j.electacta.2015.11.043

Wei, 2016, Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors, Nano Energy, 28, 206, 10.1016/j.nanoen.2016.08.023

Yuan, 2017, Mesoporous nitrogen-doped graphene aerogels with enhanced rate capability towards high performance supercapacitors, Ceram. Int., 43, 11563, 10.1016/j.ceramint.2017.05.087

Jokar, 2018, An efficient two-step approach for improvement of graphene aerogel characteristics in preparation of supercapacitor electrodes, J. Energy Storage, 17, 465, 10.1016/j.est.2018.04.014

Zhou, 2018, Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell, Electrochim. Acta, 264, 12, 10.1016/j.electacta.2018.01.009

Ghosh, 2018, Development of 3D MoO3 graphene aerogel and sandwich-type polyaniline decorated porous MnO2 graphene hybrid film based high performance all-solid-state asymmetric supercapacitors, Electrochim. Acta, 276, 47, 10.1016/j.electacta.2018.04.162

Xu, 2018, Carbon aerogel-based supercapacitors modified by hummers oxidation method, J. Colloid Interface. Sci., 527, 25, 10.1016/j.jcis.2018.04.108

Yang, 2018, Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes, Carbohydr. Polym, 180, 385, 10.1016/j.carbpol.2017.10.013

Xu, 2018, A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors, Appl. Surf. Sci., 428, 977, 10.1016/j.apsusc.2017.09.247

Wang, 2018, Flower-like Fe2O3@multiple graphene aerogel for high-performance supercapacitors, J. Alloys Compd., 742, 759, 10.1016/j.jallcom.2018.01.187

Wang, 2018, Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors, J. Alloys Compd., 749, 517, 10.1016/j.jallcom.2018.03.223

Jayaseelan, 2018, Mesoporous 3D NiCo2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes, Colloid. Surf. A, 538, 451, 10.1016/j.colsurfa.2017.11.037

Li, 2018, Structural evolution of carbon aerogel microspheres by thermal treatment for high–power supercapacitors, J. Energy Chem., 27, 439, 10.1016/j.jechem.2017.11.026

Zeng, 2018, Nitrogen-doped carbon aerogels with high surface area for supercapacitors and gas adsorption, Mater. Today Commun., 16, 1, 10.1016/j.mtcomm.2018.03.015