Graphene and Graphene-Like Materials for Hydrogen Energy
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. P. Gubin and S. V. Tkachev, Graphene and Related Carbon Nanoforms (Librokom, Moscow, 2012) [in Russian].
O. K. Alekseeva, S. I. Kozlov, R. O. Samsonov, and V. N. Fateev, Transp. Al’tern. Toplive, No. 4 (10), 68 (2009).
O. K. Alekseeva, S. I. Kozlov, R. O. Samsonov, and V. N. Fateev, Transp. Al’tern. Toplive, No. 5 (11), 72 (2009).
Yu. S. Nechaev, O. K. Alexeeva, and A. Öchsner, J. Nanosci. Nanotechnol. 9, 3949 (2009). https://doi.org/10.1166/jnn.2009.NS95
X. Yu, Z. Tang, D. Sun, et al., Prog. Mater. Sci. 88, 1 (2017). https://doi.org/10.1016/j.pmatsci.2017.03.001
M. D. Stoller, S. Park, Y. Zhu, et al., Nano Lett. 8, 3498 (2008). https://doi.org/10.1021/nl802558y
A. Klechikov, G. Mercier, T. Sharifi, et al., Chem. Commun. 51, 15280 (2015). https://doi.org/10.1039/C5CC05474E
V. Tozzini and V. Pellegrini, Phys. Chem. Chem. Phys. 15, 80 (2013). https://doi.org/10.1039/C2CP42538F
V. Jain and B. Kandasubramanian, J. Mater. Sci. 55, 1865 (2019). https://doi.org/10.1007/s10853-019-04150-y
S. Patchkovskii, J. S. Tse, S. N. Yurchenko, et al., Proc. Natl. Acad. Sci. U. S. A. 102, 10439 (2005). https://doi.org/10.1073/pnas.0501030102
M. S. L. Hudson, H. Raghubanshi, S. Awasthi, et al., Int. J. Hydrogen Energy 39, 8311 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.118
E. Boateng and A. Chen, Mater. Today Adv. 6, 100022 (2020). https://doi.org/10.1016/j.mtadv.2019.100022
K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj, and C. N. R. Rao, J. Mater. Chem. 18, 1517 (2008). https://doi.org/10.1039/b716536f
P. K. Chauhan, V. Vidhukiran, R. Sujith, and R. Parameshwaran, Mater. Res. Express 6, 105617 (2019). https://doi.org/10.1088/2053-1591/ab3cdc
A. V. Golubeva and D. I. Cherkez, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 41 (4), 26 (2018). https://doi.org/10.21517/0202-3822-2018-41-4-26-37
Y. S. Nechaev and T. N. Veziroglu, Adv. Mater. Phys. Chem. 3, 255 (2013). https://doi.org/10.4236/ampc.2013.35037
M. M. Slepchenkov, P. V. Barkov, and O. E. Glukhova, Crystals 8, 161 (2018). https://doi.org/10.3390/cryst8040161
N. G. Boddeti, S. P. Koenig, R. Long, et al., J. Appl. Mech. 80, 040909 (2013). https://doi.org/10.1115/1.4024255
M. H. F. Sluiter and Y. Kawazoe, Phys. Rev. B 68, 085410 (2003). https://doi.org/10.1103/PhysRevB.68.085410
J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007). https://doi.org/10.1103/PhysRevB.75.153401
D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science (Washington, DC, U. S.) 323, 610 (2009). https://doi.org/10.1126/science.1167130
V. D. Camiola, R. Farchioni, T. Cavallucci, et al., Front. Mater. 2, 1 (2015). https://doi.org/10.3389/fmats.2015.00003
S. Goler, C. Coletti, V. Tozzini, et al., J. Phys. Chem. C 117, 11506 (2013). https://doi.org/10.1021/jp4017536
H. McKay, D. J. Wales, S. J. Jenkins, et al., Phys. Rev. B 81, 075425 (2010). https://doi.org/10.1103/PhysRevB.81.075425
P. Z. Sun, Q. Yang, W. J. Kuang, et al., Nature (London, U.K.) 579, 229 (2020). https://doi.org/10.1038/s41586-020-2070-x
I. A. Baburin, A. Klechikov, G. Mercier, et al., Int. J. Hydrogen Energy 40, 6594 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.139
A. Pedrielli, S. Taioli, G. Garberoglio, and N. M. Pugno, Microporous Mesoporous Mater. 257, 222 (2018). https://doi.org/10.1016/j.micromeso.2017.08.034
G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. 8, 3166 (2008). https://doi.org/10.1021/nl801417w
E. Klontzas, E. Tylianakis, V. Varshney, et al., Sci. Rep. 9, 13676 (2019). https://doi.org/10.1038/s41598-019-50037-y
H. G. Shiraz and O. Tavakoli, Renewable Sustainable Energy Rev. 74, 104 (2017). https://doi.org/10.1016/j.rser.2017.02.052
F. Bonaccorso, L. Colombo, G. Yu, et al., Science (Washington, DC, U. S.) 347, 1246501 (2015). https://doi.org/10.1126/science.1246501
M. Mohan, V. K. Sharma, E. A. Kumar, and V. Gayathri, Energy Storage 1, 35 (2019). https://doi.org/10.1002/est2.35
K. Spyrou, D. Gournis, and P. Rudolf, ECS J. Solid State Sci. Technol. 2, M3160 (2013). https://doi.org/10.1149/2.018310jss
X. F. Zhou, H. Y. Fang, and C. M. Tang, Acta Phys. Sin. 68, 053601 (2019). https://doi.org/10.7498/aps.68.20181497
H. Tachikawa and T. Iyama, J. Phys. Chem. C 123, 8709 (2019). https://doi.org/10.1021/acs.jpcc.9b01152
C. C. Huang, N. W. Pu, C. A. Wang, et al., Sep. Purif. Technol. 82, 210 (2011). https://doi.org/10.1016/j.seppur.2011.09.020
S. Lamichhane, N. Pantha, and N. Adhikari, Bibechana 11, 113 (2014). https://doi.org/10.3126/bibechana.v11i0.10389
A. Ariharan, B. Viswanathan, and V. Nandhakumar, Graphene 6, 41 (2017). https://doi.org/10.4236/graphene.2017.62004
A. Ariharan, B. Viswanathan, and V. Nandhakumar, Graphene 5, 39 (2016). https://doi.org/10.4236/graphene.2016.52005
E. H. O. Gueye, A. N. Dione, A. Dioum, et al., Am. J. Nanomater. 7, 30 (2019). https://doi.org/10.12691/ajn-7-1-4
B. P. Vinayan, K. Sethupathi, and S. Ramaprabhu, J. Nanosci. Nanotechnol. 12, 6608 (2012). https://doi.org/10.1166/jnn.2012.4539
Y. S. Nechaev, V. P. Filippova, A. A. Tomchuk, et al., Nanosyst.: Phys. Chem. Math. 7, 204 (2016). https://doi.org/10.17586/2220-8054-2016-7-1-204-209
H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie, Nano Lett. 10, 793 (2010). https://doi.org/10.1021/nl902822s
P. Divya and S. Ramaprabhu, Phys. Chem. Chem. Phys. 16, 26725 (2014). https://doi.org/10.1039/C4CP04214J
C. Zhou and J. A. Szpunar, ACS Appl. Mater. Interfaces 8, 25933 (2016). https://doi.org/10.1021/acsami.6b07122
M. Scardamaglia and C. Bittencourt, Beilstein J. Nanotechnol. 9, 2015 (2018). https://doi.org/10.3762/bjnano.9.191
K. Gao, B. Wang, L. Tao, et al., Adv. Mater. 31, 1805121 (2019). https://doi.org/10.1002/adma.201805121
G. Xia, Y. Tan, F. Wu, et al., Nano Energy 26, 488 (2016). https://doi.org/10.1016/j.nanoen.2016.06.016
S. I. Kozlov and V. N. Fateev, Hydrogen Energy: Current State, Problems, Prospects (Gazprom VNIIGAZ, Moscow, 2009) [in Russian].
E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, A. S. Tolkacheva, S. N. Shkerin and A. B. Yaroslav-tsev, Nanotechnol. Russ. 12, 597 (2017).
X. Y. Chen, N. Tien-Binh, A. Romero, et al., J. Membr. Sci. Res. 6, 58 (2020). https://doi.org/10.22079/JMSR.2019.100069.1244
S. K. Alen, S. Nam, and S. A. Dastgheib, Int. J. Mol. Sci. 20, 5609 (2019). https://doi.org/10.3390/ijms20225609
H. W. Yoon, Y. H. Cho, and H. B. Park, Philos. Trans. R. Soc. A 374, 20150024 (2016). https://doi.org/10.1098/rsta.2015.0024
O. K. Alekseeva and D. M. Amirkhanov, Ros. Khim. Zh. 48 (5), 82 (2004).
D. M. Amirkhanov, O. K. Alekseeva, A. A. Kotenko, et al., Membrany, No. 4 (32), 19 (2006).
O. K. Alekseeva, A. A. Kotenko, and M. M. Chelyak, Membrany, No. 4 (36), 3 (2007).
O. K. Alexeeva, Y. S. Nechaev, B. L. Shapir, and A. Öchsner, Int. Sci. J. Altern. Energy Ecol., No. 1 (69), 131 (2009).
Z. Kang, S. Wang, L. Fan, et al., Commun. Chem. 1, 3 (2018). https://doi.org/10.1038/s42004-017-0002-y
T. Hyun, J. Jeong, A. Chae, et al., BMC Chem. Eng. 1, 12 (2019). https://doi.org/10.1186/s42480-019-0012-x
S. Kim, H. Wang, and Y. M. Lee, Angew. Chem. Int. Ed. 58, 17512 (2019). https://doi.org/10.1002/anie.201814349
M. R. A. Hamid and H. K. Jeong, Korean J. Chem. Eng. 35, 1577 (2018). https://doi.org/10.1007/s11814-018-0081-1
C. Sun, X. Zheng, and B. Bai, Chem. Eng. Sci. 208, 115141 (2019). https://doi.org/10.1016/j.ces.2019.07.059
O. K. Alekseeva, Voda Mag., No. 6 (82), 30 (2014).
S. C. O’Hern, M. S. H. Boutilier, J. C. Idrobo, et al., Nano Lett. 14, 1234 (2014). https://doi.org/10.1021/nl404118f
K. Celebi, J. Buchheim, R. M. Wyss, et al., Science (Washington, DC, U. S.) 344, 289 (2014). https://doi.org/10.1126/science.1249097
T. Gilboa, A. Zrehen, A. Girsault, and A. Meller, Sci. Rep. 8, 9765 (2018). https://doi.org/10.1038/s41598-018-28136-z
S. Huang, M. Dakhchoune, W. Luo, et al., Nat. Commun. 9, 2632 (2018). https://doi.org/10.1038/s41467-018-04904-3
S. Wei, S. Zhou, Z. Wu, et al., Appl. Surf. Sci. 441, 631 (2018). https://doi.org/10.1016/j.apsusc.2018.02.111
H. W. Kim, H. W. Yoon, S. M. Yoon, et al., Science (Washington, DC, U. S.) 342, 91 (2013). https://doi.org/10.1126/science.1236098
D. Bouša, K. Friess, K. Pilnáček, et al., Chem.-Eur. J. 23, 11416 (2017). https://doi.org/10.1002/chem.201702233
H. Zheng, L. Zhu, D. He, et al., Int. J. Hydrogen Energy 42, 30653 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.134
A. Ibrahim and Y. S. Lin, J. Membr. Sci. 550, 238 (2018). https://doi.org/10.1016/j.memsci.2017.12.081
A. F. M. Ibrahim and Y. S. Lin, Chem. Eng. Sci. 190, 312 (2018). https://doi.org/10.1016/j.ces.2018.06.031
A. F. M. Ibrahim, F. Banihashemi, and Y. S. Lin, Chem. Commun. 55, 3077 (2019). https://doi.org/10.1039/C8CC10283J
Q. Liu, K. M. Gupta, Q. Xu, et al., Sep. Purif. Technol. 209, 419 (2019). https://doi.org/10.1016/j.seppur.2018.07.044
R. Zeynali, K. Ghasemzadeh, A. B. Sarand, et al., Catal. Today 330, 16 (2019). https://doi.org/10.1016/j.cattod.2018.05.047
M. Ostwal, D. B. Shinde, X. Wang, et al., J. Membr. Sci. 550, 145 (2018). https://doi.org/10.1016/j.memsci.2017.12.063
W. R. W. Daud, R. E. Rosli, E. H. Majlan, et al., Renewable Energy 113, 620 (2017). https://doi.org/10.1016/j.renene.2017.06.027
M. Bodner, J. Senn, and V. Hacker, Fuel Cells and Hydrogen: From Fundamentals to Applied Research (Elsevier, Amsterdam, 2018). https://doi.org/10.1016/B978-0-12-811459-9.00007-4
L. Dai, D. W. Chang, J. B. Baek, and W. Lu, Small 8, 1130 (2012). https://doi.org/10.1002/smll.201101594
P. Trogadas, T. F. Fuller, and P. Strasser, Carbon (N. Y.) 75, 5 (2014). https://doi.org/10.1016/j.carbon.2014.04.005
S. Sharma and B. G. Pollet, J. Power Sources 208, 96 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.011
L. Du, Y. Shao, J. Sun, et al., Nano Energy 29, 314 (2016). https://doi.org/10.1016/j.nanoen.2016.03.016
R. P. Pandey, G. Shukla, M. Manohar, and V. K. Shahi, Adv. Colloid Interface Sci. 240, 15 (2017). https://doi.org/10.1016/j.cis.2016.12.003
S. Sui, X. Wang, X. Zhou, et al., J. Mater. Chem. A 5, 1808 (2017). https://doi.org/10.1039/C6TA08580F
Y. Li, L. Tang, and J. Li, Electrochem. Commun. 11, 846 (2009). https://doi.org/10.1016/j.elecom.2009.02.009
S. H. Hsieh, M. C. Hsu, W. L. Liu, and W. J. Chen, Appl. Surf. Sci. 277, 223 (2013). https://doi.org/10.1016/j.apsusc.2013.04.029
Y. Xin, J. Liu, Y. Zhou, et al., J. Power Sources 196, 1012 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.051
Y. Liang, D. Wu, X. Feng, and K. Müllen, Adv. Mater. 21, 1679 (2009). https://doi.org/10.1002/adma.200803160
H. Wang, J. Du, Z. Yao, et al., Colloids Surf., A 436, 57 (2013). https://doi.org/10.1016/j.colsurfa.2013.06.020
Z. Yao, M. Zhu, F. Jiang, et al., J. Mater. Chem. 22, 13707 (2012). https://doi.org/10.1039/c2jm31683h
Z. Yao, R. Yue, C. Zhai, et al., Int. J. Hydrogen Energy 38, 6368 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.140
M. Lei, C. Liang, Y. J. Wang, et al., Electrochim. Acta 113, 366 (2013). https://doi.org/10.1016/j.electacta.2013.09.119
S. Park, Y. Shao, H. Wan, et al., Electrochem. Commun. 13, 258 (2011). https://doi.org/10.1016/j.elecom.2010.12.028
K. Cheng, D. He, T. Peng, et al., Electrochim. Acta 132, 356 (2014). https://doi.org/10.1016/j.electacta.2014.03.181
I. E. Baranov, V. I. Porembskii, E. K. Lyutikova, et al., Chem. Probl., No. 4 (17), 489 (2019). https://doi.org/10.32737/2221-8688-2019-4-489-499
L. I. Şanli, V. Bayram, B. Yarar, et al., Int. J. Hydrogen Energy 41, 3414 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.166
E. Daş, S. Alkan Gürsel, L. Işikel Şanli, and A. Bayrakçeken Yurtcan, Int. J. Hydrogen Energy 41, 9755 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.111
S. Hussain, H. Erikson, N. Kongi, et al., ChemElectroChem 5, 2902 (2018). https://doi.org/10.1002/celc.201800582
Y. Devrim, E. D. Arıca, and A. Albostan, Int. J. Hydrogen Energy 43, 11820 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.047
G. U. Alpaydin, Y. Devrim, and C. O. Colpan, Int. J. Energy Res. 43, 3578 (2019). https://doi.org/10.1002/er.4504
L. Pak Hoe, M. Boaventura, T. Lagarteira, et al., Int. J. Hydrogen Energy 43, 16998 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.147
A. S. Pushkarev, M. A. Solovyev, S. A. Grigoriev, et al., Int. J. Hydrogen Energy 45, 26206 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.098
Y. Z. Voloshin, N. V. Chornenka, O. A. Varzatskii, et al., Electrochim. Acta 269, 590 (2018). https://doi.org/10.1016/j.electacta.2018.03.030
Y. Z. Voloshin, N. V. Chornenka, A. S. Belov, et al., J. Electrochem. Soc. 166, H598 (2019). https://doi.org/10.1149/2.0391913jes
S. Dey, B. Mondal, S. Chatterjee, et al., Nat. Rev. Chem. 1, 0098 (2017). https://doi.org/10.1038/s41570-017-0098
L. I. Şanlı, B. Yarar, V. Bayram, and S. A. Gürsel, J. Mater. Sci. 52, 2091 (2017). https://doi.org/10.1007/s10853-016-0497-0
M. S. Yılmaz, B. Y. Kaplan, Ö. Metin, and S. A. Gürsel, Mater. Des. 151, 29 (2018). https://doi.org/10.1016/j.matdes.2018.04.041
L. I. Şanlı, V. Bayram, S. Ghobadi, et al., Int. J. Hydrogen Energy 42, 1085 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.210
A. B. Yurtcan and E. Daş, Int. J. Hydrogen Energy 43, 18691 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.186
H. N. Yang, D. C. Lee, K. W. Park, and W. J. Kim, Energy 89, 500 (2015). https://doi.org/10.1016/j.energy.2015.06.019
Y. S. Yun, D. Kim, Y. Tak, and H. J. Jin, Synth. Met. 161, 2460 (2011). https://doi.org/10.1016/j.synthmet.2011.09.030
Z. Liu, A. A. Abdelhafiz, Y. Jiang, et al., Mater. Chem. Phys. 225, 371 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.100
A. A. Nechitailov, N. V. Glebova, D. V. Koshkina, A. A. Tomasov, N. K. Zelenina, and E. E. Terukova, Tech. Phys. Lett. 39, 762 (2013).
J. Y. Lee, J. J. Lee, H. R. Rhim, et al., Adv. Mater. Res. 123–125, 1107 (2010). https://doi.org/10.4028/www.scientific.net/AMR.123-125.1107
A. I. Finaenov, I. E. Shpak, A. V. Afonina, et al., Vestn. SGTU, No. 4 (68), 107 (2012).
A. V. Yakovlev, A. I. Finaenov, S. L. Zabud’kov, and E. V. Yakovleva, Russ. J. Appl. Chem. 79, 1741 (2006).
B. K. Kakati, A. Ghosh, and A. Verma, Int. J. Hydrogen Energy 38, 9362 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.075
C. C. Sung, C. Y. Liu, and C. C. J. Cheng, Int. J. Hydrogen Energy 39, 11706 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.154
A. S. Pushkarev, I. V. Pushkareva, S. A. Grigoriev, et al., Int. J. Hydrogen Energy 40, 14492 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.093
S. A. Grigor’ev, A. S. Pushkarev, V. N. Kalinichenko, I. V. Pushkareva, M. Yu. Presnyakov, and V. N. Fateev, Kinet. Catal. 56, 689 (2015).
I. E. Baranov, I. I. Nikolaev, A. S. Pushkarev, et al., Int. J. Electrochem. Sci. 13, 8673 (2018). https://doi.org/10.20964/2018.09.48
A. O. Krasnova, N. V. Glebova, D. V. Zhilina, and A. A. Nechitailov, Russ. J. Appl. Chem. 90, 361 (2017). https://doi.org/10.1134/S1070427217030065
A. A. Ignatova and O. V. Yarmolenko, Al’tern. Energet. Ekol. 172–173 (8–9), 112 (2015). https://doi.org/10.15518/isjaee.2015.08-09.014
D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010). https://doi.org/10.1039/B917103G
X. Wang, G. Sun, P. Routh, et al., Chem. Soc. Rev. 43, 7067 (2014). https://doi.org/10.1039/C4CS00141A
M. Vikkisk, I. Kruusenberg, U. Joost, et al., Appl. Catal. B 147, 369 (2014). https://doi.org/10.1016/j.apcatb.2013.09.011
U. N. Maiti, W. J. Lee, J. M. Lee, et al., Adv. Mater. 26, 40 (2014). https://doi.org/10.1002/adma.201303265
M. V. Martínez-Huerta, and M. J. Lázaro, Catal. Today 285, 3 (2017). https://doi.org/10.1016/j.cattod.2017.02.015
A. Heydari and H. Gharibi, J. Power Sources 325, 808 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.039
J. Kim, C. Kim, I. Y. Jeon, et al., ChemElectroChem 5, 2857 (2018). https://doi.org/10.1002/celc.201800674
A. Pullamsetty, M. Subbiah, and R. Sundara, Int. J. Hydrogen Energy 40, 10251 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.020
D. Lim, Y. Shim, J. Oh, et al., J. Solid State Chem. 271, 168 (2019). https://doi.org/10.1016/j.jssc.2018.12.058
S. D. Razumovskii, V. N. Gorshenev, A. L. Kovarskii, et al., Fullerenes, Nanotubes Carbon Nanostruct. 15, 53 (2007). https://doi.org/10.1080/15363830600812423
P. M. Álvarez, J. F. García-Araya, F. J. Beltrán, et al., J. Colloid Interface Sci. 283, 503 (2005). https://doi.org/10.1016/j.jcis.2004.09.014
Z. Xu, M. Yue, L. Chen, et al., Chem. Eng. J. 240, 187 (2014). https://doi.org/10.1016/j.cej.2013.11.045
H. Tao, J. Moser, F. Alzina, et al., J. Phys. Chem. C 115, 18257 (2011). https://doi.org/10.1021/jp2050756
E. Teran-Salgado, D. Bahena-Uribe, P. A. Márquez-Aguilar, et al., Electrochim. Acta 298, 172 (2019). https://doi.org/10.1016/j.electacta.2018.12.057
S. A. Grigoriev, V. N. Fateev, A. S. Pushkarev, et al., Materials 11, 1405 (2018). https://doi.org/10.3390/ma11081405
I. V. Pushkareva, “Development and research of electrocatalytic materials for fuel cells with solid polymer electrolyte,” Cand. Sci. (Tech. Sci.) Dissertation (NRU “MPEI”, Moscow, 2019).
J. Gaidukevič, J. Razumienė, I. Šakinyt?de, et al., Carbon (N. Y.) 118, 156 (2017). https://doi.org/10.1016/j.carbon.2017.03.049
G. L. Chai, K. Qiu, M. Qiao, et al., Energy Environ. Sci. 10, 1186 (2017). https://doi.org/10.1039/C6EE03446B
J. Li, Y. Zhang, X. Zhang, et al., ACS Appl. Mater. Interfaces 9, 398 (2017). https://doi.org/10.1021/acsami.6b12547
K. Gong, F. Du, Z. Xia, et al., Science (Washington, DC, U. S.) 323, 760 (2009). https://doi.org/10.1126/science.1168049
J. Wu, L. Ma, R. M. Yadav, et al., ACS Appl. Mater. Interfaces 7, 14763 (2015). https://doi.org/10.1021/acsami.5b02902