Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

Applied Sciences - Tập 4 Số 4 - Trang 525-547
J. Renteria1,2, Denis L. Nika1,3, Alexander A. Balandin1,2
1Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical Engineering and Materials Science and Engineering Program, University of California—Riverside, Riverside, CA 92521, USA
2Quantum Seed LLC, 1190 Columbia Avenue, Riverside, CA 92507, USA
3Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Moldova

Tóm tắt

We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

Từ khóa


Tài liệu tham khảo

Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064

Nika, 2012, Two-dimensional phonon transport in graphene, J. Phys., 24, 233203

Balandin, 2012, Phonons in low-dimensions: Engineering phonons in nanostructures and grapheme, Mater. Today, 15, 266, 10.1016/S1369-7021(12)70117-7

Balandin, 2008, Superior thermal conductivity of single layer grapheme, Nano Lett., 8, 902, 10.1021/nl0731872

Ghosh, 2008, Extremely high thermal conductivity in graphene: Prospects for thermal management application in nanoelectronic circuits, Appl. Phys. Lett., 92, 151911, 10.1063/1.2907977

Ferrari, 2006, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 97, 187401, 10.1103/PhysRevLett.97.187401

Calizo, 2007, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett., 7, 2645, 10.1021/nl071033g

Calizo, 2007, Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices, Appl. Phys. Lett., 91, 071913, 10.1063/1.2771379

Calizo, 2007, The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass, Appl. Phys. Lett., 91, 201904, 10.1063/1.2805024

Calizo, 2009, Ultraviolet Raman microscopy of single and multilayer grapheme, J. Appl. Phys., 106, 043509, 10.1063/1.3197065

Teweldebrhan, 2009, Modification of graphene properties due to electron-beam irradiation, Appl. Phys. Lett., 94, 013101, 10.1063/1.3062851

Sadeghi, 2012, Thermal transport in graphene, Solid State Commun., 152, 1321, 10.1016/j.ssc.2012.04.022

Wemhoff, 2012, A review of theoretical techniques for graphene and graphene nanoribbons thermal conductivity prediction, Int. J. Transp. Phenom., 13, 121

Balandin, 2009, Better computing through CPU cooling, IEEE Spectr., 29, 35

Garimella, 2008, Thermal Challenges in Next-Generation Electronic Systems, IEEE Trans. Compon. Packag. Technol., 31, 801, 10.1109/TCAPT.2008.2001197

Linden, D., and Reddy, B.T. (2002). Handbook of Batteries, McGraw-Hill.

Spotnitz, 2003, Abuse behavior of high-power, lithium-ion cells, J. Power Sources, 113, 81, 10.1016/S0378-7753(02)00488-3

Mikolajczak, 2011, Lithium-Ion Batteries Hazard and Use Assessment, Fire Prot. Res. Found., 76, 102

FAA Press Release (2013). Federal Aviation Administration, FAA Press.

Zalba, 2003, Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications, Appl. Ther. Eng., 23, 251, 10.1016/S1359-4311(02)00192-8

Agyenim, 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew Sustain. Energy Rev., 14, 615, 10.1016/j.rser.2009.10.015

Farid, 2004, A review on phase change energy storage: Materials and applications, Energy Convers. Manag., 45, 1597, 10.1016/j.enconman.2003.09.015

Sharma, 2005, Latent heat storage materials and systems: A review, J. Green Energy, 2, 1, 10.1081/GE-200051299

Yu, 2007, Graphite nanoplatelet-epoxy composite thermal interface materials, J. Phys. Chem. C, 111, 7565, 10.1021/jp071761s

Prasher, 2006, Thermal conductivity of composites of aligned nanoscale and microscale wires and pores, Proc. IEEE, 94, 1571, 10.1109/JPROC.2006.879796

Shahil, 2012, Graphene-Multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett., 12, 861, 10.1021/nl203906r

Yan, 2012, Graphene quilts for thermal management of high-power GaN transistors, Nat. Commun., 3, 827, 10.1038/ncomms1828

Goyal, 2012, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials, Appl. Phys. Lett., 100, 073113, 10.1063/1.3687173

Goli, 2014, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources, 248, 37, 10.1016/j.jpowsour.2013.08.135

Shahil, 2012, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials, Solid State Commun., 152, 1331, 10.1016/j.ssc.2012.04.034

Ghosh, 2010, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater., 9, 555, 10.1038/nmat2753

Cai, 2010, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10, 1645, 10.1021/nl9041966

Jauregui, 2010, Thermal transport in graphene nanostructures: Experiments and simulations, ECS Trans., 28, 73, 10.1149/1.3367938

Mak, 2011, Seeing many-body effects in single and few layer graphene: Observation of two-dimensional saddle point excitons, Phys. Rev. Lett., 106, 046401, 10.1103/PhysRevLett.106.046401

Kim, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706, 10.1038/nature07719

Kravets, 2010, Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption, Phys. Rev. B, 81, 155413, 10.1103/PhysRevB.81.155413

Seol, 2010, Two-dimensional phonon transport in supported graphene, Science, 328, 213, 10.1126/science.1184014

Maultzsch, 2004, Phonon dispersion in graphite, Phys. Rev. Lett., 92, 075501, 10.1103/PhysRevLett.92.075501

Mounet, 2005, First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives, Phys. Rev. B, 71, 205214, 10.1103/PhysRevB.71.205214

Wirtz, 2004, The phonon dispersion of graphite revisited, Solid State Commun., 131, 141, 10.1016/j.ssc.2004.04.042

Nika, 2009, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B, 79, 155413, 10.1103/PhysRevB.79.155413

Nika, 2009, Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite, Appl. Phys. Lett., 94, 203103, 10.1063/1.3136860

Nika, 2012, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett., 12, 3238, 10.1021/nl301230g

Cocemasov, 2013, Phonons in twisted bilayer graphene, Phys. Rev. B, 88, 035428, 10.1103/PhysRevB.88.035428

Falkovsky, 2008, Symmetry constraints on phonon dispersion in graphene, Phys. Lett. A, 372, 5189, 10.1016/j.physleta.2008.05.085

Perebeinos, 2009, Valence force model for phonons in graphene and carbon nanotubes, Phys. Rev. B, 79, 241409, 10.1103/PhysRevB.79.241409

Droth, 2011, Acoustic phonon and spin relaxation in graphene nanoribbons, Phys. Rev. B, 84, 155404, 10.1103/PhysRevB.84.155404

Qian, 2009, Quantized long-wavelength optical phonon modes in graphene nanoribbon in the elastic continuum model, Superlattices Microstruct., 46, 881, 10.1016/j.spmi.2009.09.001

Alofi, 2012, Phonon conductivity in graphene, J. Appl. Phys., 112, 013517, 10.1063/1.4733690

Yan, 2008, Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory, Phys. Rev. B, 77, 125401, 10.1103/PhysRevB.77.125401

Dubay, 2003, Accurate density functional calculations for the phonon dispersion relation of graphite layer and carbon nanotubes, Phys. Rev. B, 67, 035401, 10.1103/PhysRevB.67.035401

Wang, 2009, Vibrational properties of graphene and graphene layers, J. Raman Spectrosc., 40, 1791, 10.1002/jrs.2321

Lindsay, 2010, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B, 81, 205441, 10.1103/PhysRevB.81.205441

Lindsay, 2011, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B, 83, 235428, 10.1103/PhysRevB.83.235428

Singh, 2011, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys., 110, 044317, 10.1063/1.3622300

Zhong, 2011, Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study, Appl. Phys. Lett., 98, 113107, 10.1063/1.3567415

Evans, 2010, Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination, Appl. Phys. Lett., 96, 203112, 10.1063/1.3435465

Zhang, 2011, Thermal transport in graphene and effects of vacancies, Phys. Rev. B, 84, 115460, 10.1103/PhysRevB.84.115460

Wei, 2011, In-plane lattice thermal conductivities of multilayer graphene films, Carbon, 49, 2653, 10.1016/j.carbon.2011.02.051

Ong, 2011, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B, 84, 075471, 10.1103/PhysRevB.84.075471

Wei, 2011, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology, 22, 105705, 10.1088/0957-4484/22/10/105705

Hao, 2011, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett., 99, 041901, 10.1063/1.3615290

Mortazavi, 2013, Thermal conductivity and tensile response of defective graphene: A molecular dynamics study, Carbon, 63, 460, 10.1016/j.carbon.2013.07.017

Ng, 2012, A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone-Thrower-Wales defects, Carbon, 50, 4887, 10.1016/j.carbon.2012.06.017

Jang, 2012, Thermal conductivity of defected graphene, Phys. Lett. A, 376, 3668, 10.1016/j.physleta.2012.10.048

Yeo, 2012, Comparing the effects of dispersed Stone-Thrower-Wales defects and doule vacancies on the thermal conductivity of graphene nanoribbons, Nanotechnology, 23, 385702, 10.1088/0957-4484/23/38/385702

Yang, 2012, Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation, Appl. Surf. Sci., 258, 9926, 10.1016/j.apsusc.2012.06.052

Park, 2013, Length-dependent thermal conductivity of graphene and its macroscopic limit, J. Appl. Phys., 114, 053506, 10.1063/1.4817175

Yu, 2013, Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons, J. Appl. Phys., 113, 044306, 10.1063/1.4788813

Cao, 2012, Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries, J. Appl. Phys., 111, 083528, 10.1063/1.4705510

Cao, 2012, Layer and size dependence of thermal conductivity in multilayer graphene, Phys. Lett. A, 373, 525, 10.1016/j.physleta.2011.11.016

Cheng, 2012, Thermal transport in graphene supported copper, J. Appl. Phys., 112, 043502, 10.1063/1.4740071

Yeo, 2012, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 23, 495702, 10.1088/0957-4484/23/49/495702

Ma, 2012, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett., 101, 111904, 10.1063/1.4752010

Huang, 2010, Simulation of phonon transmission through graphene and graphene nanoribbons with a Green’s function method, J. Appl. Phys., 108, 094319, 10.1063/1.3499347

Zhai, 2011, Stretching-enhanced ballistic thermal conductance in graphene Nanoribbons, Europhys. Lett., 96, 16002, 10.1209/0295-5075/96/16002

Klemens, 2000, Theory of the a-plane thermal conductivity of graphite, J. Wide Bandgap. Mater., 7, 332, 10.1106/7FP2-QBLN-TJPA-NC66

Klemens, 1994, Thermal conductivity of graphite in basal plane, Carbon, 32, 735, 10.1016/0008-6223(94)90096-5

Ghosh, 2009, Heat conduction in graphene: Experimental study and theoretical interpretation, New J. Phys., 11, 095012, 10.1088/1367-2630/11/9/095012

Nika, 2011, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, Phys. Stat. Sol. B, 248, 2609, 10.1002/pssb.201100186

Balandin, 2010, Extraordinary thermal conductivity of graphene: Ossible applications in thermal management, ECS Trans., 28, 63, 10.1149/1.3367937

Balandin, 2010, Thermal conduction in suspended graphene layers, Fullerenes Nanotubes Carbon Nanostruct., 18, 474, 10.1080/1536383X.2010.487785

Adamyan, 2012, Lattice thermal conductivity of graphene with conventionally isotopic defects, J. Phys., 24, 415406

Aksamija, 2011, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering, Appl. Phys. Lett., 98, 141919, 10.1063/1.3569721

Aksamija, 2012, Thermal transport in graphene nanoribbons supported on SiO2, Phys. Rev. B, 86, 165426, 10.1103/PhysRevB.86.165426

Nika, 2014, Specific heat of twisted graphene: Engineering phonons by atomic plane rotations, Appl. Phys. Lett., 105, 031904, 10.1063/1.4890622

Savin, 2010, Suppression of thermal conductivity in graphene nanoribbons with rough edges, Phys. Rev. B, 82, 195422, 10.1103/PhysRevB.82.195422

Hu, 2009, Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study, Nano Lett., 9, 2730, 10.1021/nl901231s

Guo, 2009, Thermal conductivity of graphene nanoribbons, Appl. Phys. Lett., 95, 163103, 10.1063/1.3246155

Chen, 2012, Thermal conductivity of isotopically modified graphene, Nat. Mater., 11, 203, 10.1038/nmat3207

Ouyang, 2009, Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge, Europhys. Lett., 88, 28002, 10.1209/0295-5075/88/28002

Jiang, 2010, Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism, J. Appl. Phys., 107, 054314, 10.1063/1.3329541

Zhang, 2010, Isotope effect on the thermal conductivity of graphene, J. Nanomater., 2010, 537657, 10.1155/2010/537657

Hu, 2010, Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study, Appl. Phys. Lett., 97, 133107, 10.1063/1.3491267

Alofi, 2013, Thermal conductivity of graphene and graphite, Phys. Rev. B, 87, 115421, 10.1103/PhysRevB.87.115421

Lindsay, 2014, Phonon thermal transport in strained and unstrained graphene from first principles, Phys. Rev. B, 89, 155426, 10.1103/PhysRevB.89.155426

Serov, 2013, Effect of grain boundaries on thermal transport in graphene, Appl. Phys. Lett., 102, 033104, 10.1063/1.4776667

Xu, 2014, Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun., 5, 3689, 10.1038/ncomms4689

Faugeras, 2010, Thermal conductivity of graphene in Corbino membrane geometry, ACS Nano, 4, 1889, 10.1021/nn9016229

Dorgan, 2013, Hiagh-filed electric and thermal transport in suspended graphene, Nano Lett., 13, 4581, 10.1021/nl400197w

Jang, 2010, Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite, Nano Lett., 10, 3909, 10.1021/nl101613u

Wang, 2011, Thermal transport in suspended and supported few-layer graphene, Nano Lett., 11, 113, 10.1021/nl102923q

Jang, 2013, Thermal conductivity of suspended few-layer graphene by a modified T-bridge method, Appl. Phys. Lett., 103, 133102, 10.1063/1.4821941

Pettes, 2011, Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene, Nano Lett., 11, 1195, 10.1021/nl104156y

Murali, 2009, Breakdown current density of graphene nanoribbons, Appl. Phys. Lett., 94, 243114, 10.1063/1.3147183

Liao, 2011, Thermally limited current carrying ability of graphene nanoribbons, Phys. Rev. Lett., 106, 256801, 10.1103/PhysRevLett.106.256801

Lindsay, 2010, Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit, Phys. Rev. B, 82, 161402, 10.1103/PhysRevB.82.161402

Munoz, 2010, Ballistic thermal conductance of graphene ribbons, Nano Lett., 10, 1652, 10.1021/nl904206d

Jiang, 2009, Thermal conductance of graphite and dimerite, Phys. Rev. B, 79, 205418, 10.1103/PhysRevB.79.205418

Freund, M., Csikos, R., Keszthelyi, S., and Mozes, G.Y. (1981). Paraffin Products Properties, Technologies, Applications, Akademiai Kiado.

Brown, 1954, The Interpretation of the Infra-Red and Raman Spectra of the n-Paraffins, Math. Phys. Sci., 247, 35

Edwards, 1997, Fourier-transform Raman spectroscopic study of unsaturated and saturated waxes, Spectrochim. Acta Part A, 53, 2685, 10.1016/S1386-1425(97)00161-3

Kalyanasundaram, 1976, The conformational state of surfactants in the solid state and in micellar form. A laser-excited Raman scattering study, J. Phys. Chem., 80, 1462, 10.1021/j100554a015

MacPhail, 1984, Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains, J. Phys. Chem., 88, 334, 10.1021/j150647a002

Zheng, 2006, Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: A Raman spectroscopy study, Vib. Spectrosc., 40, 219, 10.1016/j.vibspec.2005.10.001

Zheng, 2011, Reversible temperature regulation of electrical and thermal conductivity using liquid solid phase transitions, Nat. Commun., 2, 289, 10.1038/ncomms1288

Sanusi, 2011, Energy storage and solidificaiton of paraffin phase change material embedded with graphite nanofibers, Int. J. Heat Mass Transfer., 54, 4429, 10.1016/j.ijheatmasstransfer.2011.04.046

Schiffres, 2013, Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control, ACS Nano, 7, 11183, 10.1021/nn404935m

Gustafsson, 1991, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials, Rev. Sci. Instrum., 62, 797, 10.1063/1.1142087

Xia, 2010, Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon, 48, 2538, 10.1016/j.carbon.2010.03.030

He, 2005, Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations, Thermochim. Acta, 436, 122, 10.1016/j.tca.2005.06.026

He, 2005, Rapid thermal conductivity measurement with a hot disk sensor: Part 2. Characterization of thermal greases, Thermochim. Acta, 436, 130, 10.1016/j.tca.2005.07.003

Ghosh, 2009, Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia, J. Appl. Phys., 106, 113507, 10.1063/1.3264613

Shamsa, 2008, Thermal conductivity of nitrogeneated ultrananocrystalline diamond films on silicon, J. Appl. Phys., 103, 083538, 10.1063/1.2907865

Gustafsson, 1986, Thermal transport studies of electrically conducting materials using the transient hot-strip technique, J. Phys. D, 19, 727, 10.1088/0022-3727/19/5/007

Gustavsson, 2006, On the Use of the Transient Hot-Strip Method for Measuring the Thermal Conductivity of High-Conducting Thin Bars, Int. J. Thermophys., 27, 1816, 10.1007/s10765-006-0072-z

Chintakrida, 2011, A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes, Int. J. Therm. Sci., 50, 1639, 10.1016/j.ijthermalsci.2011.04.005

Ehid, 2012, The shape stabilization of paraffin phase change material to reduce graphite nanofiber settling during the phase change process, Energy Convers. Manag., 57, 60, 10.1016/j.enconman.2011.12.008

Wang, 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Solar Energy, 84, 339, 10.1016/j.solener.2009.12.004

Berhan, 2007, Modeling percolation in high-aspect-ratio fiber systems. II. The effect of waviness on the percolation onset, Phys. Rev. E, 75, 041121, 10.1103/PhysRevE.75.041121

Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272

Shenogina, 2005, On the lack of thermal percolation in carbon nanotube composites, Appl. Phys. Lett., 87, 133106, 10.1063/1.2056591

Gulotty, 2013, Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube-Polymer Nanocomposites, ACS Nano., 7, 5114, 10.1021/nn400726g

Kapitza, 1941, The study of heat transfer in helium II, J. Phys. USSR, 4, 181

Konatham, 2011, Simulation insights into thermally conductive graphene-based nanocomposites, Mol. Phys., 109, 97, 10.1080/00268976.2010.533707

Konatham, 2009, Thermal boundary resistance at the graphene-oil interface, Appl. Phys. Lett., 95, 163105, 10.1063/1.3251794

Konathan, 2012, Thermal boundary resistance at the graphene-graphene interface estimated by molecular dynamics simulations, Chem. Phys. Lett., 527, 47, 10.1016/j.cplett.2012.01.007