Vật Liệu Nano Từ Gia Đình Graphene Tăng Cường Các Composites Dựa Trên Magie Để Ứng Dụng Y Sinh: Một Bài Tổng Quan Toàn Diện

Metals - Tập 10 Số 8 - Trang 1002
Somayeh Abazari1, Ali Shamsipur1, Hamid Reza Bakhsheshi‐Rad2, Seeram Ramakrishna3, Filippo Berto4
1Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
2Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3Nanoscience and Nanotechnology Initiative, National University of Singapore, 9 Engineering Drive 1, Singapore, 1157, Singapore
4Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Tóm tắt

Cùng với việc nâng cao quy trình cấy ghép chịu lực cho việc thay thế và tái tạo xương, một yêu cầu ngày càng tăng đã được quan sát liên quan đến magiê phân hủy sinh học và các hợp kim của nó với mật độ nhẹ hơn và đặc tính vượt trội. Bất chấp tiềm năng lớn hiện tại của việc sử dụng Mg, việc sử dụng rộng rãi các hợp kim Mg vẫn tiếp tục bị hạn chế bởi một số nguyên nhân tự nhiên, chẳng hạn như khả năng chống ăn mòn thấp, độ bền cơ học không đủ trong quá trình chữa lành và hiệu suất kháng khuẩn kém. Trong bối cảnh này, các composites dựa trên magiê được bao bọc trong các vật liệu nano thuộc họ graphene (GFNs) như graphene (Gr), graphene oxide (GO), graphene nanoplatelets (GNPs) và giảm oxide graphene (rGO) với vai trò là tác nhân gia cường có hoạt tính kháng khuẩn tuyệt vời, cũng như phản ứng tế bào và cho thấy nhiều lợi ích cho việc sử dụng y sinh. Các nanocomposite ma trận magiê được gia cường bằng GFNs có đặc tính cơ học được cải thiện và khả năng chống ăn mòn cao (graphene có nồng độ thấp). Đáng lưu ý rằng nhiều yếu tố bao gồm kỹ thuật sản xuất composite dựa trên magiê chứa GFNs và kích thước, phân bổ cũng như số lượng GFNs trong ma trận chứa magiê có vai trò quan trọng trong các đặc tính và ứng dụng của chúng. Tiếp theo, các cơ chế kháng khuẩn của composite dựa trên GFN được mô tả ngắn gọn. Sau đó, các cơ chế kháng khuẩn và gia cường của các composites dựa trên magiê chứa GFN được mô tả ngắn gọn. Bài viết tổng quan này nhằm tóm tắt và khám phá các nghiên cứu liên quan nhất được thực hiện theo hướng các composites dựa trên magiê được bao bọc trong GFNs. Các hướng nghiên cứu khả thi trong tương lai trong lĩnh vực composites dựa trên magiê chứa GFN được thảo luận một cách chi tiết.

Từ khóa


Tài liệu tham khảo

Mullan, 2015, Annual Report-Australia, Eur. Heal. Psychol., 17, 214

Han, 2019, Current status and outlook on the clinical translation of biodegradable Metals, Mater. Today, 23, 57, 10.1016/j.mattod.2018.05.018

Li, 2013, Novel magnesium alloys developed for biomedical application: A review, J. Mater. Sci. Technol., 29, 489, 10.1016/j.jmst.2013.02.005

Zheng, 2014, Biodegradable metals, Mater. Sci. Eng. R., 77, 1, 10.1016/j.mser.2014.01.001

Lee, 1992, Size of metallic and polyethylene debris particles in failed cemented total hip replacements, J. Bone Joint. Surg. Br., 74, 380, 10.1302/0301-620X.74B3.1587882

Akbari, 2019, Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance, Surf. Coat. Technol., 37, 124898

Hermawan, H. (Germany 2012). Biodegradable metals: State of the art. Biodegradable Metals, Springer.

Yun, 2009, Revolutionizing biodegradable metals, Mater. Today, 12, 22, 10.1016/S1369-7021(09)70273-1

Moravej, 2011, Biodegradable metals for cardiovascular stent application: Interests and new opportunities, Int. J. Mol. Sci., 12, 4250, 10.3390/ijms12074250

Gong, 2014, Biomimetic design and fabrication of porous chitosan–gelatin liver scaffolds with hierarchical channel network, J. Mater. Sci. Mater. Med., 25, 113, 10.1007/s10856-013-5061-8

Onuma, 2011, Bioresorbable scaffold technologies, Circ. J., 75, 509, 10.1253/circj.CJ-10-1135

Hamzah, 2016, Preparation and characterization of NiCrAlY/nano-YSZ/PCL composite coatings obtained by combination of atmospheric plasma spraying and dip coating on Mg–Ca alloy, J. Alloys Compd., 658, 440, 10.1016/j.jallcom.2015.10.196

Sanchez, 2015, Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomater., 13, 16, 10.1016/j.actbio.2014.11.048

Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003

Witte, 2008, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci., 12, 63, 10.1016/j.cossms.2009.04.001

Chen, 2014, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater., 10, 4561, 10.1016/j.actbio.2014.07.005

Dayaghi, 2019, Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment, Mater. Sci. Eng. C, 102, 53, 10.1016/j.msec.2019.04.010

Xiong, 2018, Biomimetic Ca, Sr/P-doped silk fibroin films on Mg-1Ca alloy with dramatic corrosion resistance and osteogenic activities, ACS Biomater. Sci. Eng., 4, 3163, 10.1021/acsbiomaterials.8b00787

Nicolini, 2016, High Performance Lightweight Magnesium Nanocomposites for Engineering and Biomedical Applications, Nano World J., 2, 78

Miracle, D.B., Donaldson, S.L., Henry, S.D., Moosbrugger, C., Anton, G.J., Sanders, B.R., Hrivnak, N., Terman, C., Kinson, J., and Muldoon, K. (2001). ASM Handbook: Composite, ASM International.

Thakur, 2007, Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements, J. Mater. Sci., 42, 10040, 10.1007/s10853-007-2004-0

Razzaghi, 2020, Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn-0.5Ag alloy: Prepared by mechanical alloying for implant applications, Compos. Part B Eng., 190, 107947, 10.1016/j.compositesb.2020.107947

Goh, 2007, Properties and deformation behaviour of Mg–Y2O3 nanocomposites, Acta Mater., 55, 5115, 10.1016/j.actamat.2007.05.032

Hassan, 2005, Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement, Mater Sci. Eng. A, 392, 163, 10.1016/j.msea.2004.09.047

Sankaranarayanan, 2014, Nano-ZnO particle addition to monolithic magnesium for enhanced tensile and compressive response, J. Alloys Compd., 615, 211, 10.1016/j.jallcom.2014.06.163

Meenashisundaram, 2014, Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates, Mater. Charact., 94, 178, 10.1016/j.matchar.2014.05.021

Tjong, 2013, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R Rep., 74, 281, 10.1016/j.mser.2013.08.001

Tjong, 2007, Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties, Adv. Eng. Mater., 9, 639, 10.1002/adem.200700106

Haghshenas, 2017, Mechanical characteristics of biodegradable magnesium matrix composites: A review, J. Magnes Alloy, 5, 189, 10.1016/j.jma.2017.05.001

Munir, 2020, Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications, J. Magnes Alloy, 828, 154461

Li, 2019, Additive manufacturing high performance graphene-based composites: A review, Compos. Part A Appl. Sci. Manuf., 124, 105483, 10.1016/j.compositesa.2019.105483

Gao, 2017, Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair, Acta Biomater., 61, 1, 10.1016/j.actbio.2017.05.020

Shuai, 2016, Mechanical and structural characterization of diopside scaffolds reinforced with graphene, J. Alloys Compd., 655, 86, 10.1016/j.jallcom.2015.09.134

Liu, 2017, Development and antibacterial performance of novel polylactic acid-graphene oxide-silver nanoparticle hybrid nanocomposite mats prepared by electrospinning, ACS Biomater. Sci. Eng., 3, 471, 10.1021/acsbiomaterials.6b00766

Rashad, 2015, Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets, Prog. Nat. Sci. Mater. Int., 25, 460, 10.1016/j.pnsc.2015.09.005

Saris, 2000, Magnesium: An update on physiological, clinical and analytical aspects, Clin. Chim. Acta, 294, 1, 10.1016/S0009-8981(99)00258-2

Song, 2003, Understanding magnesium corrosion—a framework for improved alloy performance, Adv. Eng. Mater., 5, 837, 10.1002/adem.200310405

Witte, 2010, The history of biodegradable magnesium implants: A review, Acta Biomater., 6, 1680, 10.1016/j.actbio.2010.02.028

Zhao, 2017, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials, 112, 287, 10.1016/j.biomaterials.2016.10.017

Rodrigues, 2011, Inhibition of bacterial adhesion on medical devices, Bacterial Adhesion, Volume 715, 351, 10.1007/978-94-007-0940-9_22

Bellucci, 2011, A new generation of scaffolds for bone tissue engineering, Ind. Ceram., 31, 59

Boccaccini, 2005, Bioactive composite materials for tissue engineering scaffolds, Expert Rev. Med. Devices, 2, 303, 10.1586/17434440.2.3.303

Boccaccini, 2010, Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds, J. R Soc. Interface, 7, 209, 10.1098/rsif.2009.0379

Hornberger, 2012, Biomedical coatings on magnesium alloys—A review, Acta Biomater., 8, 2442, 10.1016/j.actbio.2012.04.012

Ali, 2019, Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, J. Alloys Compd., 792, 1162, 10.1016/j.jallcom.2019.04.080

Prakasam, M., Locs, J., Salma-Ancane, K., Loca, D., Largeteau, A., and Berzina-Cimdina, L. (2017). Biodegradable materials and metallic implants—a review. J. Funct. Biomater., 8.

Munir, 2019, Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: A review, Adv. Biosyst., 3, 1800212, 10.1002/adbi.201800212

Doble, 2015, Design of biocomposite materials for bone tissue regeneration, Mater Sci. Eng., C, 57, 452, 10.1016/j.msec.2015.07.016

Xie, 2017, Graphene for the development of the next-generation of biocomposites for dental and medical applications, Dent. Mater., 33, 765, 10.1016/j.dental.2017.04.008

Hu, 2010, Graphene-Based Antibacterial Paper, ACS Nano., 4, 4317, 10.1021/nn101097v

Hamzah, 2016, Structure, corrosion behavior, and antibacterial properties of nano-silica/graphene oxide coating on biodegradable magnesium alloy for biomedical applications, Vacuum, 131, 106, 10.1016/j.vacuum.2016.05.021

Krishnamoorthy, 2012, Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation, J. Phys. Chem. C, 116, 17280, 10.1021/jp3047054

Loh, 2010, The chemistry of graphene, J. Mater. Chem., 20, 2277, 10.1039/b920539j

Gurunathan, 2013, Antibacterial activity of dithiothreitol reduced graphene oxide, J. Ind. Eng. Chem., 19, 1280, 10.1016/j.jiec.2012.12.029

Akhavan, 2010, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano., 4, 5731, 10.1021/nn101390x

Chen, 2014, Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation, Nanoscale, 6, 1879, 10.1039/C3NR04941H

Liu, 2011, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress, ACS Nano., 5, 6971, 10.1021/nn202451x

Chen, 2013, A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae, J. Nanopart. Res., 15, 1658, 10.1007/s11051-013-1658-6

Ahmed, 2013, Investigation of acute effects of graphene oxide on wastewater microbial community: A case study, J. Hazard Mater., 256, 33, 10.1016/j.jhazmat.2013.03.064

Gurunathan, 2012, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa, Int. J. Nanomed., 7, 5901, 10.2147/IJN.S37397

Park, 2009, Chemical methods for the production of graphenes, Nat. Nanotechnol., 4, 217, 10.1038/nnano.2009.58

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896

Eizenberg, 1979, Carbon monolayer phase condensation on Ni (111), Surf. Sci., 82, 228, 10.1016/0039-6028(79)90330-3

Aizawa, 1990, Anomalous bond of monolayer graphite on transition-metal carbide surfaces, Phys. Rev. Lett., 64, 768, 10.1103/PhysRevLett.64.768

Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925

Stankovich, 2006, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44, 3342, 10.1016/j.carbon.2006.06.004

Stankovich, 2006, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate), J. Mater. Chem., 16, 155, 10.1039/B512799H

Staudenmaier, 1898, Verfahren zur darstellung der graphitsäure, Berichte der Dtsch. Chem. Gesellschaft., 31, 1481, 10.1002/cber.18980310237

Hummers, 1958, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017

Boehm, 1962, Das adsorptionsverhalten sehr dünner kohlenstoff-folien, Zeitschrift für Anorg. und Allg. Chemie, 316, 119, 10.1002/zaac.19623160303

Stankovich, 2006, Graphene-based composite Materials, Nature, 442, 282, 10.1038/nature04969

Schniepp, 2006, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B, 110, 8535, 10.1021/jp060936f

McAllister, 2007, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 19, 4396, 10.1021/cm0630800

Kumar, 2014, Graphene reinforced metal matrix composite (GRMMC): A review, Procedia Eng., 97, 1033, 10.1016/j.proeng.2014.12.381

Rodriguez, 2017, CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation, Surf. Coat. Technol., 311, 10, 10.1016/j.surfcoat.2016.12.111

Pei, 2012, The reduction of graphene oxide, Carbon, 50, 3210, 10.1016/j.carbon.2011.11.010

Dreyer, 2010, RS Ruoff The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228, 10.1039/B917103G

Rosa, 2016, Graphene oxide-based substrate: Physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells, Dent Mater., 32, 1019, 10.1016/j.dental.2016.05.008

Choi, 2010, Synthesis of graphene and its applications: A review, Crit. Rev. Solid State Mater. Sci., 35, 52, 10.1080/10408430903505036

Zhu, 2010, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater., 22, 3906, 10.1002/adma.201001068

Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996

Jeon, 2014, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing, Int. J. Precis Eng. Manuf., 15, 1235, 10.1007/s12541-014-0462-2

Xiang, 2016, Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties, Sci. Rep., 6, 38824, 10.1038/srep38824

Kumar, 2020, Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites, Compos. Part B Eng., 183, 107664, 10.1016/j.compositesb.2019.107664

Salleh, 2017, Enhanced mechanical properties and corrosion behavior of biodegradable Mg-Zn/HA composite, Metall. Mater. Trans. A, 48, 2519, 10.1007/s11661-017-4028-7

Khalajabadi, 2014, Effect of mechanical alloying on the phase evolution, microstructure and bio-corrosion properties of a Mg/HA/TiO2/MgO nanocomposite, Ceram. Int., 40, 16743, 10.1016/j.ceramint.2014.08.039

Saheban, 2019, Effect of zeolite on the corrosion behavior, biocompatibility and antibacterial activity of porous magnesium/zeolite composite scaffolds, Mater. Technol., 34, 258, 10.1080/10667857.2018.1549803

Wan, 2016, Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route, J. Compos. Mater., 99, 521

Zheng, 2010, In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy, Acta Biomater., 6, 1783, 10.1016/j.actbio.2009.10.009

Chen, 2012, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites, Scr. Mater., 67, 29, 10.1016/j.scriptamat.2012.03.013

Rashad, 2015, Development of magnesium-graphene nanoplatelets composite, J Compos. Mater., 49, 285, 10.1177/0021998313518360

Du, 2018, Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites, Mater. Sci. Eng. A, 711, 633, 10.1016/j.msea.2017.11.040

Yang, 2019, Investigation of the microstructure and mechanical properties of AZ31/graphene composite fabricated by semi-solid isothermal treatment and hot extrusion, JOM, 71, 4162, 10.1007/s11837-019-03736-w

Shahin, 2020, Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials, J. Alloys Compd., 828, 154461, 10.1016/j.jallcom.2020.154461

Rashad, 2016, High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets, J. Compos. Mater., 89, 1242

Ramezanzade, 2020, Microstructure and mechanical characterizations of graphene nanoplatelets-reinforced Mg–Sr–Ca alloy as a novel composite in structural and biomedical applications, J. Compos. Mater., 54, 711, 10.1177/0021998319867464

Wang, 2018, Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process, Carbon, 139, 954, 10.1016/j.carbon.2018.08.009

Du, 2019, Defects in graphene nanoplatelets and their interface behavior to reinforce magnesium alloys, Appl. Surf. Sci., 484, 414, 10.1016/j.apsusc.2019.04.111

Xiang, 2017, Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets, Compos. Part A Appl. Sci. Manuf., 100, 183, 10.1016/j.compositesa.2017.05.011

Rashad, 2016, Exploring mechanical behavior of Mg–6Zn alloy reinforced with graphene nanoplatelets, Mater. Sci. Eng. A, 649, 263, 10.1016/j.msea.2015.10.009

Arab, 2018, Graphene nanoplatelet (GNP)-incorporated AZ31 magnesium nanocomposite: Microstructural, mechanical and tribological properties, Tribol. Lett., 66, 156, 10.1007/s11249-018-1108-9

Shuai, 2019, 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties, Compos. Part B Eng., 162, 611, 10.1016/j.compositesb.2019.01.031

Chen, 2013, Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing, Scr. Mater., 69, 634, 10.1016/j.scriptamat.2013.07.016

Nie, 2011, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd., 509, 8664, 10.1016/j.jallcom.2011.06.091

Turan, 2018, Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy, J. Alloys Compd., 740, 1149, 10.1016/j.jallcom.2018.01.103

Turan, 2020, Dry sliding wear behavior of (MWCNT + GNPs) reinforced AZ91 magnesium matrix hybrid composites, Met. Mater. Int., 26, 540, 10.1007/s12540-019-00338-8

Turan, 2017, The effect of GNPs on wear and corrosion behaviors of pure magnesium, J. Alloys Compd., 724, 14, 10.1016/j.jallcom.2017.07.022

Turan, 2018, Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites, Mater. Chem. Phys., 218, 182, 10.1016/j.matchemphys.2018.07.050

Rashad, 2014, Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs), J. Ind. Eng. Chem., 20, 4250, 10.1016/j.jiec.2014.01.028

Saberi, 2020, Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties, J. Alloys Compd., 821, 153379, 10.1016/j.jallcom.2019.153379

Rashad, 2014, Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, J. Alloys Compd., 603, 111, 10.1016/j.jallcom.2014.03.038

Rafiee, 2010, Fracture and fatigue in graphene nanocomposites, Small, 6, 179, 10.1002/smll.200901480

Ferguson, 2014, On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy, Met. Mater. Int., 20, 375, 10.1007/s12540-014-2017-6

Ramezanzade, 2019, Synergetic effect of GNPs and MgOs on the mechanical properties of Mg–Sr–Ca alloy, Mater. Sci. Eng. A, 761, 138025, 10.1016/j.msea.2019.138025

Meng, 2018, Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction, Mater. Sci. Eng. A, 733, 414, 10.1016/j.msea.2018.07.056

Yuan, 2018, Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets, Carbon, 127, 177, 10.1016/j.carbon.2017.10.090

Kandemir, 2018, Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing, J Mater. Eng. Perform., 27, 3014, 10.1007/s11665-018-3391-x

Rashad, 2015, Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method, J. Ind. Eng. Chem., 23, 243, 10.1016/j.jiec.2014.08.024

Rashad, 2015, Improved mechanical properties of magnesium–graphene composites with copper–graphene hybrids, Mater. Sci. Technol., 31, 1452, 10.1179/1743284714Y.0000000726

Rashad, 2015, Magnesium matrix composites reinforced with graphene nanoplatelets, Graphene Mater. Sci. Eng. A, 630, 36, 10.1016/j.msea.2015.02.002

Clyne, T.W., and Withers, P.J. (1995). An Introduction to Metal Matrix Composites, Cambridge university press.

Courtney, T.H. (2005). Mechanical Behavior of Materials, Waveland Press.

Koc, 2018, Fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites, Compos. Part B Eng., 154, 1, 10.1016/j.compositesb.2018.07.035

Tiwari, A., and Syväjärvi, M. (2015). Graphene Materials: Fundamentals and Emerging Applications, John Wiley & Sons.

Rashad, 2015, Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy, J. Alloys Compd., 646, 223, 10.1016/j.jallcom.2015.06.051

Rashad, 2016, High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method, J. Magnes Alloy, 4, 270, 10.1016/j.jma.2016.11.003

Ebrahimi, 2019, Effect of graphene nanoplatelets content on the microstructural and mechanical properties of AZ80 magnesium alloy, Mater. Sci. Eng. A, 742, 373, 10.1016/j.msea.2018.11.025

Rashad, 2013, Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys, J. Magnes Alloy, 1, 242, 10.1016/j.jma.2013.09.004

Manivasagam, 2014, Biodegradable Mg and Mg based alloys for biomedical implants, Mater. Sci. Technol., 30, 515, 10.1179/1743284713Y.0000000500

Gu, 2009, A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate, Acta Biomater., 5, 2790, 10.1016/j.actbio.2009.01.048

Lloyd, 2002, Interfacial bioengineering to enhance surface biocompatibility, Med. Device Technol., 13, 18

Ruedi, T.P. (2000). AO principles of fracture management, Thieme.

Erinc, M., Sillekens, W.H., Mannens, R., and Werkhoven, R.J. (2009, January 15–19). Applicability of existing magnesium alloys as biomedical implant Materials. Proceedings of the Magnesium Technology 2009, San Francisco, CA, USA. Conference code: 76923.

Atrens, 2015, Possible dissolution pathways participating in the Mg corrosion reaction, Corros. Sci., 92, 173, 10.1016/j.corsci.2014.12.004

Xin, 2008, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment, Acta Biomater., 4, 2008, 10.1016/j.actbio.2008.05.014

Raucci, 2017, Comparative facile methods for preparing graphene oxide–hydroxyapatite for bone tissue engineering, J. Tissue Eng. Regen Med., 11, 2204, 10.1002/term.2119

Kurapati, 2015, Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase, Small, 11, 3985, 10.1002/smll.201500038

Kirkland, 2012, Exploring graphene as a corrosion protection barrier, Corros. Sci., 56, 1, 10.1016/j.corsci.2011.12.003

Raman, 2012, Protecting copper from electrochemical degradation by graphene coating, Carbon, 50, 4040, 10.1016/j.carbon.2012.04.048

Neupane, 2015, Surface characterization and corrosion behavior of silanized magnesium coated with graphene for biomedical application, Mater. Chem. Phys., 163, 229, 10.1016/j.matchemphys.2015.07.034

Rashad, 2017, Corrosion behavior of magnesium-graphene composites in sodium chloride solutions, J. Magnes Alloy, 5, 271, 10.1016/j.jma.2017.06.003

Kavimani, 2017, Influence of r-GO addition on enhancement of corrosion and wear behavior of AZ31 MMC, Appl. Phys. A, 123, 514, 10.1007/s00339-017-1118-8

Kavimani, 2019, Investigation of graphene-reinforced magnesium metal matrix composites processed through a solvent-based powder metallurgy route, Bull. Mater. Sci., 42, 39, 10.1007/s12034-018-1720-1

Aydin, F., Ayday, A., Turan, M.E., and Zengin, H. (2019). Role of graphene additive on wear and electrochemical corrosion behaviour of plasma electrolytic oxidation (PEO) coatings on Mg–MWCNT nanocomposite. Surf. Eng., 1–9.

Tsetseris, 2014, Graphene: An impermeable or selectively permeable membrane for atomic species?, Carbon, 67, 58, 10.1016/j.carbon.2013.09.055

Kotchey, 2011, The Enzymatic Oxidation of Graphene Oxide, ACS Nano., 5, 2098, 10.1021/nn103265h

Bonaccorso, 2015, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, 347, 1246501, 10.1126/science.1246501

Newman, 2017, Hypochlorite degrades 2D graphene oxide sheets faster than 1D oxidised carbon nanotubes and nanohorns, NPJ 2D Mater. Appl., 1, 1, 10.1038/s41699-017-0041-3

Bal, 2012, Orthopedic applications of silicon nitride ceramics, Acta Biomater., 8, 2889, 10.1016/j.actbio.2012.04.031

Shahin, 2019, Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives, Acta Biomater., 96, 1, 10.1016/j.actbio.2019.06.007

Shen, 2010, Covalent attaching protein to graphene oxide via diimide-activated amidation, Colloids Surf., B, 81, 434, 10.1016/j.colsurfb.2010.07.035

Girase, 2012, Cellular mechanics of modulated osteoblasts functions in graphene oxide reinforced elastomers, Adv. Eng. Mater., 14, 101, 10.1002/adem.201180028

Neagu, 2017, Protein bio-corona: Critical issue in immune nanotoxicology, Arch. Toxicol., 91, 1031, 10.1007/s00204-016-1797-5

La, 2014, Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration, Int. J. Nanomed., 9, 107

Ku, 2013, Myoblast differentiation on graphene oxide, Biomaterials, 34, 2017, 10.1016/j.biomaterials.2012.11.052

Rice, 2011, Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields, Biomed. Eng. Online, 10, 9, 10.1186/1475-925X-10-9

Aaron, 2004, Stimulation of growth factor synthesis by electric and electromagnetic fields, Clin. Orthop. Relat. Res., 419, 30, 10.1097/00003086-200402000-00006

Gong, 2015, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application, J. Mater. Sci. Mater. Med., 26, 110, 10.1007/s10856-015-5441-3

Nanda, 2016, Study of antibacterial mechanism of graphene oxide using Raman spectroscopy, Sci. Rep., 6, 1, 10.1038/srep28443

Hegab, 2016, The controversial antibacterial activity of graphene-based Materials, Carbon, 105, 362, 10.1016/j.carbon.2016.04.046

Li, 2013, The antifungal activity of graphene oxide–silver nanocomposites, Biomaterials, 34, 3882, 10.1016/j.biomaterials.2013.02.001

Zhao, 2018, Highly stable graphene-based nanocomposite (GO–PEI–Ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects, ACS Appl. Mater. Interfaces, 10, 17617, 10.1021/acsami.8b03185

Zou, 2016, Mechanisms of the antimicrobial activities of graphene Materials, J. Am. Chem. Soc., 138, 2064, 10.1021/jacs.5b11411

Shuai, 2018, A graphene oxide-Ag co-dispersing nanosystem: Dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds, Chem. Eng. J., 347, 322, 10.1016/j.cej.2018.04.092

Saito, 2014, Safe clinical use of carbon nanotubes as innovative Biomaterials, Chem. Rev., 114, 6040, 10.1021/cr400341h

Rahim, M.I., Ullah, S., and Mueller, P.P. (2018). Advances and challenges of biodegradable implant materials with a focus on magnesium-alloys and bacterial infections. Metals, 8.

Peron, M., Torgersen, J., and Berto, F. (2017). Mg and its alloys for biomedical applications: Exploring corrosion and its interplay with mechanical failure. Metals, 7.

Azarniya, A., Safavi, M.S., Sovizi, S., Azarniya, A., Chen, B., Madaah Hosseini, H.R., and Ramakrishna, S. (2017). Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals, 7.

Liu, L., Wang, J., Russell, T., Sankar, J., and Yun, Y. (2017). The biological responses to magnesium-based biodegradable medical devices. Metals, 7.

Zhou, M., Qu, X., Ren, L., Fan, L., Zhang, Y., Guo, Y., Quan, G., Tang, Q., Liu, B., and Sun, H. (2017). The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials, 10.

Saboori, A., Dadkhah, M., Fino, P., and Pavese, M. (2018). An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties. Metals, 8.

Saboori, A., Moheimani, S.K., Dadkhah, M., Pavese, M., Badini, C., and Fino, P. (2018). An overview of key challenges in the fabrication of metal matrix nanocomposites reinforced by graphene nanoplatelets. Metals, 8.

Kim, G.-N., Kim, J.-H., Kim, B.-S., Jeong, H.-M., and Huh, S.-C. (2016). Study on the thermal conductivity characteristics of graphene prepared by the planetary ball mill. Metals, 6.

Li, H., Fan, L., Zhou, M., Zhou, Y., Jiang, K., and Chen, Y. (2020). Hot compression deformation and activation energy of nanohybrid-reinforced AZ80 magnesium matrix composite. Metals, 10.

Dai, Y., Liu, H., Tang, Y., Xu, X., Long, H., Yan, Y., Luo, Z., Zhang, Y., Yu, K., and Zhu, Y. (2018). A potential biodegradable Mg-Y-Ag implant with strengthened antimicrobial properties in orthopedic applications. Metals, 8.

Kafri, A., Ovadia, S., Goldman, J., Drelich, J., and Aghion, E. (2018). The suitability of Zn–1.3% Fe alloy as a biodegradable implant material. Metals, 8.

Cao, N.Q., Pham, D.N., Kai, N., Dinh, H.V., Hiromoto, S., and Kobayashi, E. (2017). In vitro corrosion properties of Mg matrix in situ composites fabricated by spark plasma sintering. Metals, 7.

Lin, D.-J., Hung, F.-Y., Lee, H.-P., and Yeh, M.-L. (2017). Development of a novel degradation-controlled magnesium-based regeneration membrane for future guided bone regeneration (GBR) therapy. Metals, 7.

Vinogradov, A., Vasilev, E., Kopylov, V.I., Linderov, M., Brilevesky, A., and Merson, D. (2019). High performance fine-grained biodegradable Mg-Zn-Ca alloys processed by severe plastic deformation. Metals, 9.

Tun, K.S., Zhang, Y., Parande, G., Manakari, V., and Gupta, M. (2018). Enhancing the hardness and compressive response of magnesium using complex composition alloy reinforcement. Metals, 8.

Dayaghi, 2019, Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaffolds containing silver for bone tissue engineering, Trans. Nonferrous Met. Soc. China, 29, 984, 10.1016/S1003-6326(19)65007-7

Razzaghi, 2019, In vitro degradation, antibacterial activity and cytotoxicity of Mg-3Zn-xAg nanocomposites synthesized by mechanical alloying for implant applications, J. Mater. Eng. Perform., 28, 1441, 10.1007/s11665-019-03923-5

Hamzah, 2018, Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold, Mater. Des., 139, 212, 10.1016/j.matdes.2017.10.072

Abdellahi, 2016, Introducing a composite coating containing CNTs with good corrosion properties: Characterization and simulation, RSC Adv., 6, 108498, 10.1039/C6RA24222G

Hamzah, 2017, Microstructure, In Vitro corrosion behavior and cytotoxicity of biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi alloys, J. Mater. Eng. Perform., 26, 653, 10.1007/s11665-016-2499-0

Hamzah, 2015, The mechanical properties and corrosion behavior of quaternary Mg-6Zn-0.8Mn-xCa alloys, J. Mater. Eng. Perform., 24, 598, 10.1007/s11665-014-1271-6

Tok, 2015, The role of bismuth on the microstructure and corrosion behavior of ternary Mg-1.2Ca-xBi alloys for biomedical application, J. Alloys Compd., 640, 335, 10.1016/j.jallcom.2015.03.217

Hamzah, 2014, Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Mater Corros., 65, 1178, 10.1002/maco.201307588

Idris, 2014, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys, Mater. Des., 53, 283, 10.1016/j.matdes.2013.06.055

Idris, 2012, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys, Corros. Sci., 64, 184, 10.1016/j.corsci.2012.07.015

Idris, 2012, Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys, Mater. Des., 33, 88, 10.1016/j.matdes.2011.06.057

Farahany, 2012, In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems, Thermochim. Acta, 527, 180, 10.1016/j.tca.2011.10.027

Daroonparvar, 2016, Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives, J. Alloys Compd., 688, 841, 10.1016/j.jallcom.2016.07.081

Safari, 2019, Influence of copper on the structural, mechanical, and biological characteristics of Mg–1Al–Cu alloy, Mater. Chem. Phys., 237, 121838, 10.1016/j.matchemphys.2019.121838

Golshirazi, 2017, Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy, Carbohydr. Polym., 167, 185, 10.1016/j.carbpol.2017.03.025

Wierzbicka, E., Pillado, B., Mohedano, M., Arrabal, R., and Matykina, E. (2020). Calcium doped flash-PEO coatings for corrosion protection of Mg alloy. Metals, 10.

Feliu, S. (2020). Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals, 10.

Mitchell, J., Crow, N., and Nieto, A. (2020). Effect of surface roughness on pitting corrosion of AZ31 Mg alloy. Metals, 10.

Liu, H., Li, W., Pei, Z., and Yan, M. (2020). Mg-based materials with quasiamorphous phase produced by vertical twin-roll casting process. Metals, 10.

Qi, Y., Wang, H., Chen, L., Zhang, H., Chen, G., Chen, L., and Du, Z. (2020). Preparation and mechanical properties of ZK61-Y magnesium alloy wheel hub via liquid forging—isothermal forging process. Metals, 10.

Kunčická, L., Král, P., Dvořák, J., and Kocich, R. (2019). Texture evolution in biocompatible Mg-Y-Re alloy after friction stir processing. Metals, 9.

Chen, Y.-T., Hung, F.-Y., and Syu, J.-C. (2019). Biodegradable implantation material: Mechanical properties and surface corrosion mechanism of Mg-1Ca-0.5Zr alloy. Metals, 9.