Graphene: A novel carbon nanomaterial
Tóm tắt
Từ khóa
Tài liệu tham khảo
Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, vol. 306, no. 5696, pp. 666–669.
Geim, A.K. and Novoselov, K.S., The Rise of Graphene, Nat. Mater., 2007, vol. 6, no. 3, pp. 183–191.
Weng, L., Zhang, L., Chen, Y.P., et al., Atomic Force Microscope Local Oxidation Nanolithography of Graphene, Appl. Phys. Lett., 2008, vol. 93, no. 9, paper 093107.
Bunch, J.S., Zande, V.D., Verbridge, A.M., et al., Electromechanical Resonators from Graphene Sheets, Science, 2007, vol. 315, no. 5811, pp. 490–493.
Wu, J., Agrawal, M., Becerril, H.A., et al., Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes, ACS Nano, 2010, vol. 4, no. 1, pp. 43–48.
Stoller, M.D., Park, S., Zhu, Y., et al., Graphene-Based Ultracapacitors, Nano Lett., 2008, vol. 8, no. 10, pp. 3498–3502.
Balandin, A.A., Ghosh, S., Bao, W., et al., Extremely High Thermal Conductivity of Graphene: Experimental Study, Nano Lett., 2008, vol. 8, no. 3, pp. 902–907.
Novoselov, K.S., Jiang, D., Schedin, F., et al., Two-Dimensional Atomic Crystals, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 30, paper 10451.
Hernandez, Y., High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite, Nat. Nanotechnol., 2008, vol. 3, no. 9, pp. 563–568.
Brodie, B.C., Sur le poids atomique du graphite, Ann. Chim. Phys., 1860, vol. 59, pp. 466–472.
Staudenmaier, L., Verfahren zur Darstellung der Graphitsaure, Ber. Deut. Chem. Ges., 1898, vol. 31, pp. 1481–1499.
Hummers, W.S. and Offeman, R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339.
Hontoria-Lycas, C., Lopez-Peinado, A.J., Lopez-Gonzalez, J. De D., et al., Study of Oxygen-Containing Groups in Series of Graphite Oxides: Physical and Chemical Characterization, Carbon, 1995, vol. 33, no. 11, p. 1585.
Szaro, T., Berkesi, O., Forgo, P., et al., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Chem. Mater., 2006, vol. 18, no. 11, pp. 2740–2749.
Park, S., Lee, K.S., Bozoklu, G., et al., Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking, ACS Nano, 2008, vol. 2, no. 3, pp. 572–578.
Stankovich, S., Piner, R.D., Chen, X., et al., Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate), J. Mater. Chem., 2006, vol. 16, no. 2, pp. 155–158.
Stankovich, S., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets, Carbon, 2006, vol. 44, no. 15, pp. 3342–3347.
Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A., Tascon, J.M.D., Graphene Oxide Dispersions in Organic Solvents, Langmuir, 2008, vol. 24, no. 19, pp. 10560–10564.
Stankovich, S., Dikin, D.A., Piner, R.D., et al., Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 2007, vol. 45, no. 7, pp. 1558–1565.
Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., et al., Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets, J. Am. Chem. Soc., 2008, vol. 130, no. 48, pp. 16201–16206.
Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B., High-Throughput Solution Processing of Large-Scale Graphene, Nat. Nanotechnol., 2008, vol. 4, no. 1, pp. 25–29.
Stankovich, S., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Graphene-Based Composite Materials, Nature, 2006, vol. 442, no. 7100, pp. 282–286.
Wang, G., Yang, G., Park, J., et al., Facile Synthesis and Characterization of Graphene Nanosheets, J. Phys. Chem. C, 2008, vol. 112, no. 22, pp. 8192–8195.
Boehm, H.P., Eckel, M., and Scholz, W., Uber den Bildungsmechanismus des Graphitoxids, Anorg. Allg. Chem., 1967, vol. 353, pp. 236–242.
Schniepp, H.C., McAllister, M.J., Sai, H., et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B, 2006, vol. 110, no. 17, pp. 8535–8539.
McAllister, M.J., Li, J.-L., Adamson, D.H., et al., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater., 2007, vol. 19, no. 18, pp. 4396–4404.
Li, X., Zhang, G., Bai, X., et al., Highly Conducting Graphene Sheets and Langmuir-Blodgett Films, Nat. Nanotechnol., 2008, vol. 3, no. 9, pp. 538–542.
Liu, N., Luo, F., Wu, H.X., et al., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater., 2008, vol. 18, no. 10, pp. 1518–1525.
Eizenberg, M. and Blakely, J.M., Carbon Monolayer Phase Condensation on Ni(111), Surf. Sci., 1979, vol. 82, no. 1, pp. 228–236.
Aizawa, T., Souda, R., Otani, S., et al., Anomalous Bond of Monolayer Graphite on Transition-Metal Carbide Surfaces, Phys. Rev. Lett., 1990, vol. 64, no. 7, pp. 768–771.
Tontegode, A.Y., Carbon on Transition Metal Surfaces, Prog. Surf. Sci., 1991, vol. 38, nos. 3–4, pp. 201–429.
Gall, N.R., Rut’kov, E.V., and Tontegoge, A.Y., Two Dimensional Graphite Films on Metals and Their Intercalation, Int. J. Mod. Phys. B, 1997, vol. 11, no. 16, pp. 1865–1911.
Kim, K.S., Zhao, Y., Jang, H., et al., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature, 2009, vol. 457, no. 7230, pp. 706–710.
Reina, A., Jia, X., Ho, J., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 2009, vol. 9, no. 1, pp. 30–35.
Lee, Y., Bae, S., Jang, H., et al., Wafer-Scale Synthesis and Transfer of Graphene Films, Nano Lett., 2010, vol. 10, no. 2, pp. 490–493.
Sutter, P.W., Flege, J.I., and Sutter, E.A., Epitaxial Graphene on Ruthenium, Nat. Mater., 2008, vol. 7, no. 5, pp. 406–411.
Wang, J.J., Zhu, M.Y., Outlaw, R.A., et al., Free-Standing Subnanometer Graphite Sheets, Appl. Phys. Lett., 2004, vol. 85, no. 7, pp. 1265–1267.
Dato, A., Radmilovic, V., Lee, Z., et al., Substrate-Free Gas-Phase Synthesis of Graphene Sheets, Nano Lett., 2008, vol. 8, no. 7, pp. 2012–2016.
Campos-Delgado, J., Romo-Herrera, M., Jia, X., et al., Bulk Production of a New Form of sp 2 Carbon: Crystalline Graphene Nanoribbons, Nano Lett., 2008, vol. 8, no. 9, pp. 2773–2778.
Rollings, E., Gweon, G.H., Zhou, S.Y., et al., Synthesis and Characterization of Atomically Thin Graphite Films on a Silicon Carbide Substrate, J. Phys. Chem. Solids, 2006, vol. 67, nos. 9–10, pp. 2172–2177.
Hass, J., Feng, R., Li, T., et al., Highly Ordered Graphene for Two Dimensional Electronics, Appl. Phys. Lett., 2006, vol. 89, no. 4, paper 143106.
Berger, C., Song, Z., Li, X., et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, 2006, vol. 312, no. 5777, pp. 1191–1196.
Hass, J., Varchon, F., Millan-Otoya, J.E., et al., Why Multilayer Graphene on 4H-SiC (0001) Behaves Like a Single Sheet of Graphene, Phys. Rev. Lett., 2008, vol. 100, no. 12, paper 125504.
Si, Y. and Samulski, E.T., Synthesis of Water Soluble Graphene, Nano Lett., 2008, vol. 8, no. 6, pp. 1679–1682.
Williams, G., Serger, B., and Kamat, P.V., TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano, 2008, vol. 2, no. 8, pp. 1487–1491.
Li, D., Muller, M.B., Gilje, S., et al., Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 2008, vol. 3, no. 2, pp. 101–105.
Xu, Y., Bai, H., Lu, G., et al., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc., 2008, vol. 130, no. 18, pp. 5856–5857.
Park, S., An, J.H., Piner, R.D., et al., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chem. Mater., 2008, vol. 20, no. 21, pp. 6592–6594.
Niyogi, S., Bekyarova, E., Itkis, M.E., et al., Solution Properties of Graphite and Graphene, J. Am. Chem. Soc., 2006, vol. 128, no. 24, pp. 7720–7721.
Muszynski, R., Seger, B., and Kamat, P.V., Decorating Graphene Sheets with Gold Nanoparticles, J. Phys. Chem. C, 2008, vol. 112, no. 14, pp. 5263–5266.
Ramanathan, T., Abdala, A.A., Stankovich, S., et al., Functionalized Graphene Sheets for Polymer Nanocomposites, Nat. Nanotechnol., 2008, vol. 3, no. 6, pp. 327–331.
Valles, C., Drummond, C., Saadaoui, H., et al., Solutions of Negatively Charged Graphene Sheets and Ribbons, J. Am. Chem. Soc., 2008, vol. 130, no. 47, pp. 15802–15804.
Li, X., Wang, X., Zhang, L., Lee, S., et al., Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, 2008, vol. 319, no. 5867, pp. 1229–1232.
Hao, R., Qian, W., Zhang, L., et al., Aqueous Dispersions of TCNQ-Anion-Stabilized Graphene Sheets, Chem. Commun., 2008, vol. 48, pp. 6576–6578.
Worsley, K.A., Ramesh, P., Mandal, S.K., et al., Soluble Graphene Derived from Graphite Fluoride, Chem. Phys. Lett., 2007, vol. 445, nos. 1–3, pp. 51–56.
Blake, P., Bricombe, P.D., Nair, R.R., et al., Graphene-Based Liquid Crystal Device, Nano Lett., 2008, vol. 8, no. 6, pp. 1704–1708.
Choucair, M., Thordarson, P., and Stride, J.A., Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication, Nat. Nanotechnol., 2009, vol. 4, no. 1, pp. 30–33.
Ferrari, A.C., Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Photon Coupling, Doping and Nonadiabatic Effects, Solid State Commun., 2007, vol. 143, nos. 1–2, pp. 47–57.
Ferrari, A.C., Meyer, J.C., Scardasi, V., et al., Raman Spectra of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, vol. 97, no. 18, paper 187 401.
Chen, C.C., Bao, W., Theiss, J., et al., Raman Spectroscopy of Ripple Formation in Suspended Graphene, Nano Lett., 2009, vol. 9, no. 12, pp. 4172–4176.
Obraztsova, E.A., Osadchy, A.V., Obraztsova, E.D., et al., Statistical Analysis of Atomic Force Microscopy and Raman Spectroscopy Data for Estimation of Graphene Layer Numbers, Phys. Status Solidi B, 2008, vol. 245, no. 10, pp. 2055–2059.
Stolyarova, E., Rim, K.T., Ryu, S., et al., High Resolution Scanning Tunneling Mesoscopic Imaging of Graphene Sheets on an Insulating Surface, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 22, pp. 9209–9212.
Yang, H., Mayne, A.J., Boucherit, M., et al., Quantum Interference Channeling at Graphene Edges, Nano Lett., 2010, vol. 10, no. 3, pp. 943–947.
Kidin, K.N., Ozbas, B., Schniepp, H.S., et al., Raman Spectra of Graphene Oxide and Functionalized Graphene Sheets, Nano Lett., 2008, vol. 8, no. 1, pp. 36–41.
Choi, J., Lee, H., Kim, K., et al., Chemical Doping of Epitaxial Graphene by Organic Free Radicals, J. Phys. Chem. Lett., 2010, vol. 1, no. 2, pp. 505–509.
Margine, E.R., Bocquet, M.-L., and Blase-, X., Thermal Stability of Graphene and Nanotube Covalent Functionalization, Nano Lett., 2008, vol. 8, no. 10, pp. 3315–3319.
Schedin, F., Geim, A.K., Morozov, S.V., et al., Detection of Individual Gas Molecules Adsorbed on Graphene, Nat. Mater., 2007, vol. 6, no. 9, pp. 652–655.
Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., et al., Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane, Science, 2009, vol. 323, no. 5914, pp. 610–613.
Hernandez, Y., Lotya, M., Rickard, D., et al., Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery, Langmuir, 2010, vol. 26, no. 5, pp. 3208–3213.
Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., et al., 100-GHz Transistors from Wafer-Scale Epitaxial Graphene, Science, 2010, vol. 327, no. 5966, p. 662.
Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., et al., Graphene-Based Electrochemical Supercapacitors, J. Chem. Sci., 2008, vol. 120, no. 1, pp. 9–13.
Matyba, P., Yamaguchi, H., Eda, G., et al., Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices, ACS Nano, 2010, vol. 4, no. 2, pp. 637–642.
Titov, A.V. and Pearson, R., Sandwiched Graphene-Membrane Superstructures, ACS Nano, 2010, vol. 4, no. 1, pp. 229–234.
Zhang, K., Zhang, L., Zhao, X.S., et al., Graphene/Poly-aniline Nanofiber Composites As Supercapacitor Electrodes, Chem. Mater., 2010, vol. 22, no. 4, pp. 1392–1401.
Yu, D. and Dai, L., Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors, J. Phys. Chem. Lett., 2010, vol. 1, no. 2, pp. 467–470.
Kamat, P.V., Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, J. Phys. Chem. Lett., 2010, vol. 1, no. 2, pp. 520–527.