Graph spanners: A tutorial review
Tài liệu tham khảo
Peleg, 1989, Graph spanners, J. Graph Theory, 13, 99, 10.1002/jgt.3190130114
Awerbuch, 1985, Complexity of network synchronization, J. ACM, 32, 804, 10.1145/4221.4227
Bhatt, 1986, Optimal simulations of tree machines, 274
Gudmundsson, 2008, Geometric spanners, 360
Narasimhan, 2007
Abboud, 2018, A hierarchy of lower bounds for sublinear additive spanners, SIAM J. Comput., 47, 2203, 10.1137/16M1105815
Althöfer, 1993, On sparse spanners of weighted graphs, Discrete Comput. Geom., 9, 81, 10.1007/BF02189308
Kortsarz, 1994, Generating sparse 2-spanners, J. Algorithms, 17, 222, 10.1006/jagm.1994.1032
Peleg, 1989, An optimal synchronizer for the hypercube, SIAM J. Comput., 18, 740, 10.1137/0218050
Chew, 1989, There are planar graphs almost as good as the complete graph, J. Comput. System Sci., 39, 205, 10.1016/0022-0000(89)90044-5
Paul Erdős, Extremal problems in graph theory, in: Proceedings of the Symposium on Theory of Graphs and Its Applications, 1963, p. 2936.
Erdős, 1970, Some extremal problems in graph theory, 377
Parter, 2014, Bypassing Erdős’ girth conjecture: Hybrid stretch and sourcewise spanners, 608
Baswana, 2003, A simple linear time algorithm for computing a (2k−1)-spanner of O(n1+1∕k) size in weighted graphs, 384
Woodruff, 2006, Lower bounds for additive spanners, emulators, and more, 389
Wenger, 1991, Extremal graphs with no C4’s, C6’s, or C10’s, J. Combin. Theory Ser. B, 52, 113, 10.1016/0095-8956(91)90097-4
Tits, 1959, Sur la trialité et certains groupes qui s’en déduisent, Publ. Math. Inst. Hautes Études Sci., 2, 14, 10.1007/BF02684706
Cai, 1994, NP-completeness of minimum spanner problems, Discrete Appl. Math., 48, 187, 10.1016/0166-218X(94)90073-6
Arora, 1996, Hardness of approximations, 399
Elkin, 2005, Approximating k–spanner problems for k>2, Theoret. Comput. Sci., 337, 249, 10.1016/j.tcs.2004.11.022
Elkin, 2007, The hardness of approximating spanner problems, Theory Comput. Syst., 41, 691, 10.1007/s00224-006-1266-2
Dinitz, 2016, Label cover instances with large girth and the hardness of approximating basic k-spanner, ACM Trans. Algorithms, 12, 25, 10.1145/2818375
Elkin, 2000, Strong inapproximability of the basic k-spanner problem, 636
Brandes, 1998, NP-completeness results for minimum planar spanners, Discrete Math. Theor. Comput. Sci., 3
Kobayashi, 2018, NP-hardness and fixed-parameter tractability of the minimum spanner problem, Theoret. Comput. Sci., 746, 88, 10.1016/j.tcs.2018.06.031
Kobayashi, 2019
Liestman, 1993, Additive graph spanners, Networks, 23, 343, 10.1002/net.3230230417
Filtser, 2016, The greedy spanner is existentially optimal, 9
Knudsen, 2014, Additive spanners: A simple construction, 277
Garay, 1998, A sublinear time distributed algorithm for minimum-weight spanning trees, SIAM J. Comput., 27, 302, 10.1137/S0097539794261118
Peleg, 2000, Distributed computing
Borradaile, 2019, Greedy spanners are optimal in doubling metrics, 2371
Chandra, 1992, New sparseness results on graph spanners, 192
Elkin, 2014, Light spanners, 442
Elkin, 2016, Fast constructions of lightweight spanners for general graphs, ACM Trans. Algorithms, 12, 29, 10.1145/2836167
Chechik, 2018, Near-optimal light spanners, ACM Trans. Algorithms, 14, 33, 10.1145/3199607
Alstrup, 2019, Constructing light spanners deterministically in near-linear time, vol. 144, 4:1
Baswana, 2010, Additive spanners and (α, β)-spanners, ACM Trans. Algorithms, 7, 5, 10.1145/1868237.1868242
Pettie, 2009, Low distortion spanners, ACM Trans. Algorithms, 6, 7, 10.1145/1644015.1644022
Cygan, 2013, On pairwise spanners, 209
Kavitha, 2013, Small stretch pairwise spanners, 601
Kavitha, 2017, New pairwise spanners, Theory Comput. Syst., 61, 1011, 10.1007/s00224-016-9736-7
Michael Elkin, personal communication.
Halperin, 1996
Thorup, 2006, Spanners and emulators with sublinear distance errors, 802
Cormen, 2009
Bodwin, 2016, Better distance preservers and additive spanners, 855
Elkin, 2004, (1+ε,β)–Spanner constructions for general graphs, SIAM J. Comput., 33, 608, 10.1137/S0097539701393384
Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, Seth Pettie, New constructions of (α,β)–spanners and purely additive spanners, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2005, pp. 672–681.
Baswana, 2007, A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs, Random Struct. Algorithms, 30, 532, 10.1002/rsa.20130
Chechik, 2013, New additive spanners, 498
Miller, 2015, Improved parallel algorithms for spanners and hopsets, 192
Elkin, 2018, Efficient algorithms for constructing very sparse spanners and emulators, ACM Trans. Algorithms, 15, 1, 10.1145/3274651
Bollobás, 2005, Sparse distance preservers and additive spanners, SIAM J. Discrete Math., 19, 1029, 10.1137/S0895480103431046
Coppersmith, 2006, Sparse sourcewise and pairwise distance preservers, SIAM J. Discrete Math., 20, 463, 10.1137/050630696
Abboud, 2016, Error amplification for pairwise spanner lower bounds, 841
Bodwin, 2017, Linear size distance preservers, 600
Gajjar, 2017, Distance-preserving subgraphs of interval graphs
Bodwin, 2019, On the structure of unique shortest paths in graphs, 2071
Abboud, 2017, The 4/3 additive spanner exponent is tight, J. ACM, 64, 28, 10.1145/3088511
Abboud, 2018, Reachability preservers: New extremal bounds and approximation algorithms, 1865
Elkin, 2017, Terminal embeddings, Theoret. Comput. Sci., 697, 1, 10.1016/j.tcs.2017.06.021
Aingworth, 1999, Fast estimation of diameter and shortest paths (without matrix multiplication), SIAM J. Comput., 28, 1167, 10.1137/S0097539796303421
Shang-En Huang, Seth Pettie, Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts, in: 16th Scandinavian Symposium and Workshops on Algorithm Theory, 2018.
Bodwin, 2020
Woodruff, 2010, Additive spanners in nearly quadratic time, 463
Knudsen, 2017, Additive spanners and distance oracles in quadratic time
Chlamtáč, 2017, Approximating spanners and directed Steiner forest: Upper and lower bounds, 534
Ben-Levy, 2020, New (α, β) spanners and hopsets, 1695
Elkin, 2019
Ahmed, 2020
Huang, 2019, Thorup–Zwick emulators are universally optimal hopsets, Inform. Process. Lett., 142, 9, 10.1016/j.ipl.2018.10.001
Michael Elkin, Ofer Neiman, Linear-size hopsets with small hopbound, and constant-hopbound hopsets in RNC, in: The 31st ACM Symposium on Parallelism in Algorithms and Architectures, 2019, pp. 333–341.
Elkin, 2020
Sigurd, 2004, Construction of minimum-weight spanners, 797
Michael Dinitz, Robert Krauthgamer, Directed spanners via flow-based linear programs, in: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC, 2011, pp. 323–332.
Chlamtáč, 2012, Everywhere-sparse spanners via dense subgraphs
Berman, 2013, Approximation algorithms for spanner problems and directed steiner forest, 93
Chlamtáč, 2016, Lowest-degree k-spanner: Approximation and hardness, Theory Comput., 12, 1, 10.4086/toc.2016.v012a015
Dinitz, 2016, Approximating low-stretch spanners, 821
Reyan Ahmed, Keaton Hamm, MohammadJavad Latifi Jebelli, Stephen Kobourov, Faryad Darabi Sahneh, Richard Spence, Approximation algorithms and an integer program for multi-level graph spanners, in: Proceedings of the Special Event on Analysis of Experimental Algorithms, 2019.
Dinitz, 2019
Bertsimas, 1997
Ahmed, 2019
Elkin, 2005, Computing almost shortest paths, ACM Trans. Algorithms, 1, 283, 10.1145/1103963.1103968
Elkin, 2006, Efficient algorithms for constructing (1+ε, β)-spanners in the distributed and streaming models, Distrib. Comput., 18, 375, 10.1007/s00446-005-0147-2
Derbel, 2007, Deterministic distributed construction of linear stretch spanners in polylogarithmic time, 179
Derbel, 2008, On the locality of distributed sparse spanner construction, 273
Baswana, 2008, Streaming algorithm for graph spanners - Single pass and constant processing time per edge, Inform. Process. Lett., 106, 110, 10.1016/j.ipl.2007.11.001
Pettie, 2008, Distributed algorithms for ultrasparse spanners and linear size skeletons, 253
Elkin, 2011, Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners, ACM Trans. Algorithms, 7, 1, 10.1145/1921659.1921666
Lenzen, 2013, Efficient distributed source detection with limited bandwidth, 375
Kapralov, 2014, Spanners and sparsifiers in dynamic streams, 272
Censor-Hillel, 2016, Distributed construction of purely additive spanners, 129
Keren Censor-Hillel, Ami Paz, Noam Ravid, The sparsest additive spanner via multiple weigted BFS trees, in: 22nd International Conference on Principles of Distributed Systems, 2019.
Michael Elkin, Shaked Matar, Near-additive spanners in low polynomial deterministic CONGEST time, in: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, 2019, pp. 531–540.
Elkin, 2019
Peleg, 2000
Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, Jian Zhang, On graph problems in a semi-streaming model, Departmental Papers (CIS), 2005, p. 236.
Kook Jin Ahn, Sudipto Guha, Andrew McGregor, Graph sketches: sparsification, spanners, and subgraphs, in: Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 2012, pp. 5–14.
Dor, 2000, All-pairs almost shortest paths, SIAM J. Comput., 29, 1740, 10.1137/S0097539797327908
Chang, 2018, Near-optimal distance emulator for planar graphs, 16:1
Thorup, 2001, Approximate distance oracles, 183
Roditty, 2005, Deterministic constructions of approximate distance oracles and spanners, 261
Baswana, 2006, Approximate distance oracles for unweighted graphs in expected O(n2) time, ACM Trans. Algorithms, 2, 557, 10.1145/1198513.1198518
Baswana, 2008, Distance oracles for unweighted graphs: Breaking the quadratic barrier with constant additive error, 609
Sommer, 2014, Shortest-path queries in static networks, ACM Comput. Surv., 46, 45, 10.1145/2530531
Backurs, 2018, Towards tight approximation bounds for graph diameter and eccentricities, 267
Choudhary, 2020, Extremal distances in directed graphs: Tight spanners and near-optimal approximation algorithms, 495
Abraham, 2018, Ramsey spanning trees and their applications, 1650
Chan, 2006, Spanners with slack, 196
Dragan, 2011, Spanners in sparse graphs, J. Comput. System Sci., 77, 1108, 10.1016/j.jcss.2010.10.002
Handke, 2000, Tree spanners for subgraphs and related tree covering problems, 206
Cai, 1995, Tree spanners, SIAM J. Discrete Math., 8, 359, 10.1137/S0895480192237403
Emek, 2008, Approximating minimum max-stretch spanning trees on unweighted graphs, SIAM J. Comput., 38, 1761, 10.1137/060666202
Álvarez-Miranda, 2018, Mixed-integer programming approaches for the tree t∗-spanner problem, Optim. Lett., 1
Singh, 2018, Artifical bee colony algorithm using problem-specific neighborhood strategies for the tree t-spanner problem, Appl. Soft Comput., 62, 110, 10.1016/j.asoc.2017.10.022
Sundar, 2019, A steady-state genetic algorithm for the tree t-spanner problem, 387
Kortsarz, 1994, Generating low-degree 2-spanners, SIAM J. Comput., 27, 1438, 10.1137/S0097539794268753
Sunil Arya, Gautam Das, David M Mount, Jeffrey S Salowe, Michiel Smid, Euclidean spanners: short, thin, and lanky, in: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, STOC, 1995, pp. 489–498.
Elkin, 2015, Optimal Euclidean spanners: Really short, thin, and lanky, J. ACM, 62, 1, 10.1145/2819008
Chan, 2015, New doubling spanners: Better and simpler, SIAM J. Comput., 44, 37, 10.1137/130930984
Gottlieb, 2015, A light metric spanner, 759
Chechik, 2010, Fault tolerant spanners for general graphs, SIAM J. Comput., 39, 3403, 10.1137/090758039
Ausiello, 2010, Computing graph spanners in small memory: fault-tolerance and streaming, Discrete Math. Algorithms Appl., 2, 591, 10.1142/S1793830910000905
Dinitz, 2011, Fault-tolerant spanners: Better and simpler, 169
Braunschvig, 2015, Fault tolerant additive and (μ,α)–spanners, Theoret. Comput. Sci., 580, 94, 10.1016/j.tcs.2015.02.036
Bilò, 2015, Improved purely additive fault-tolerant spanners, 167
Parter, 2017, Vertex fault tolerant additive spanners, Distrib. Comput., 30, 357, 10.1007/s00446-015-0252-9
Bodwin, 2019, A trivial yet optimal solution to vertex fault tolerant spanners, 541
Dinitz, 2020
Levcopoulos, 1998, Efficient algorithms for constructing fault-tolerant geometric spanners, 186
Bodwin, 2018, Optimal vertex fault tolerant spanners (for fixed stretch), 1884
Parter, 2013, Sparse fault-tolerant BFS trees, 779
Parter, 2015, Dual failure resilient BFS structure, 481
Manoj Gupta, Shahbaz Khan, Multiple source dual fault tolerant BFS Trees, in: 44th International Colloquium on Automata, Languages, and Programming, Vol. 80, ICALP, 2017, pp. 127:1–127:15.
Bodwin, 2017, Preserving distances in very faulty graphs, 73:1
Ausiello, 2016, On resilient graph spanners, Algorithmica, 74, 1363, 10.1007/s00453-015-0006-x
Ausiello, 2006, Small stretch spanners on dynamic graphs, J. Graph Algorithms Appl., 10, 365, 10.7155/jgaa.00133
Baswana, 2006, Dynamic algorithms for graph spanners, 76
Baswana, 2012, Fully dynamic algorithms for graph spanners, ACM Trans. Algorithms, 8, 35:1, 10.1145/2344422.2344425
Bodwin, 2016, Fully dynamic spanners with worst-case update time
Aaron Bernstein, Sebastian Forster, Monika Henzinger, A deamortization approach for dynamic spanner and dynamic maximal matching, in: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 1899–1918.
Roditty, 2002, Roundtrip spanners and roundtrip routing in directed graphs, 844
Berman, 2011, Improved approximation for the directed spanner problem, 1
Zhu, 2017, Source-wise round-trip spanners, Inform. Process. Lett., 124, 42, 10.1016/j.ipl.2017.04.009
Zhu, 2018, Deterministic improved round-trip spanners, Inform. Process. Lett., 129, 57, 10.1016/j.ipl.2017.09.008
Cohen, 2000, Polylog-time and near-linear work approximation scheme for undirected shortest paths, J. ACM, 47, 132, 10.1145/331605.331610
Borradaile, 2017, Minor-free graphs have light spanners, 767
Busch, 2010, Concurrent counting is harder than queuing, Theoret. Comput. Sci., 411, 3823, 10.1016/j.tcs.2010.07.002
Shpungin, 2009, Near optimal multicriteria spanner constructions in wireless ad-hoc networks, 163
Baruch Awerbuch, Shay Kutten, David Peleg, Online load balancing in a distributed network, in: Proceedings of the 24th ACM Symposium on Theory of Computing, STOC, 1992, pp. 571–580.
Cai, 1997, Computing visibility information in an inaccurate simple polygon, Internat. J. Comput. Geom. Appl., 7, 515, 10.1142/S0218195997000326
Thorup, 2001, Compact routing schemes, 1
Bandelt, 1986, Reconstructing the shape of a tree from observed dissimilarity data, Adv. Appl. Math., 7, 309, 10.1016/0196-8858(86)90038-2
Russel, 2005, Exploring protein folding trajectories using geometric spanners, 40
Choudhary, 2018