Graph attention neural network for water network partitioning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alvisi S (2015) A new procedure for optimal design of district metered areas based on the multilevel balancing and refinement algorithm. Water Resour Manag 29:4397–4409
Alvisi S, Franchini M (2014) A procedure for the design of district metered areas in water distribution systems. Procedia Eng 70:41–50. https://doi.org/10.1016/j.proeng.2014.02.006
Bhagat SK, Tiyasha Welde W et al (2019) Evaluating physical and fiscal water leakage in water distribution system. Water (Switzerland). https://doi.org/10.3390/w11102091
Brentan BM, Luvizotto E, Montalvo I et al (2017) Near real time pump optimization and pressure management. Procedia Eng 186:666–675. https://doi.org/10.1016/j.proeng.2017.06.248
Brentan B, Campbell E, Goulart T et al (2018) Social network community detection and hybrid optimization for dividing water supply into district metered areas. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000924
Charalambous B (2008) Use of district metered areas coupled with pressure optimisation to reduce leakage. Water Supply 8:57–62. https://doi.org/10.2166/ws.2008.030
Choudhary M, Chouhan SS, Pilli ES, Vipparthi SK (2021) BerConvoNet: a deep learning framework for fake news classification. Appl Soft Comput 110:107614. https://doi.org/10.1016/j.asoc.2021.107614
Ciaponi C, Murari E, Todeschini S (2016) Modularity-based procedure for partitioning water distribution systems into independent districts. Water Resour Manag 30:2021–2036. https://doi.org/10.1007/s11269-016-1266-1
Di Nardo A, Di Natale M (2011) A heuristic design support methodology based on graph theory for district metering of water supply networks. Eng Optim 43:193–211. https://doi.org/10.1080/03052151003789858
Di Nardo A, Di Natale M, Di Mauro A (2013) Case study: Monterusciello network. In: Di Nardo A, Di Natale M, Di Mauro A (eds) Water supply network district metering. Springer Vienna, Vienna, pp 39–85. https://doi.org/10.1007/978-3-7091-1493-3_4
Di Nardo A, Di Natale M, Santonastaso GF et al (2014) Divide and conquer partitioning techniques for smart water networks. Procedia Eng 89:1176–1183. https://doi.org/10.1016/j.proeng.2014.11.247
Di Nardo A, Di Natale M, Giudicianni C et al (2015) Water distribution system clustering and partitioning based on social network algorithms. Procedia Eng 119:196–205. https://doi.org/10.1016/j.proeng.2015.08.876
Di Nardo A, Di Natale M, Gargano R et al (2018) Performance of partitioned water distribution networks under spatial-temporal variability of water demand. Environ Model Softw 101:128–136. https://doi.org/10.1016/j.envsoft.2017.12.020
Diao K, Zhou Y, Rauch W (2013) Automated creation of district metered area boundaries in water distribution systems. J Water Resour Plan Manag 139:184–190. https://doi.org/10.1061/(asce)wr.1943-5452.0000247
Farmani R, Walters G, Savic D (2006) Evolutionary multi-objective optimization of the design and operation of water distribution network: total cost vs. reliability vs. water quality. J Hydroinformatics 8:165–179. https://doi.org/10.2166/hydro.2006.019b
Ferrari G, Savic D, Becciu G (2014) Graph-theoretic approach and sound engineering principles for design of district metered areas. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000424
Gajghate PW, Mirajkar A, Shaikh U et al (2021) Optimization of layout and pipe sizes for irrigation pipe distribution network using Steiner point concept. Math Probl Eng. https://doi.org/10.1155/2021/6657459
Giudicianni C, Di Nardo A, Di Natale M et al (2018) Topological taxonomy of water distribution networks. Water 10:444. https://doi.org/10.3390/w10040444
Giudicianni C, Herrera M, di Nardo A, Adeyeye K (2020) Automatic multiscale approach for water networks partitioning into dynamic district metered areas. Water Resour Manag 34:835–848. https://doi.org/10.1007/s11269-019-02471-w
Giustolisi O, Ridolfi L (2014) A novel infrastructure modularity index for the segmentation of water distribution networks. Water Resour Res 50:7648–7661. https://doi.org/10.1002/2014wr016067
Gomes R, Sá Marques A, Sousa J (2011) Estimation of the benefits yielded by pressure management in water distribution systems. Urban Water J 8:65–77. https://doi.org/10.1080/1573062x.2010.542820
Grayman WM, Murray R, Savic DA (2009) Effects of redesign of water systems for security and water quality factors. In: World environmental and water resources congress 2009. Great Rivers, pp 1–11
Gupta A, Bokde N, Kulat K, Yaseen ZM (2020) Nodal matrix analysis for optimal pressure-reducing valve localization in a water distribution system. Energies 13:1878
Hajebi S, Temate S, Barrett S et al (2014) Water distribution network sectorisation using structural graph partitioning and multi-objective optimization. Procedia Eng 89:1144–1151. https://doi.org/10.1016/j.proeng.2014.11.238
Herrera M, Izquierdo J, Pérez-García R, Montalvo I (2012) Multi-agent adaptive boosting on semi-supervised water supply clusters. Adv Eng Softw 50:131–136. https://doi.org/10.1016/j.advengsoft.2012.02.005
Herrera M, Abraham E, Stoianov I (2016) A graph-theoretic framework for assessing the resilience of sectorised water distribution networks. Water Resour Manag 30:1685–1699. https://doi.org/10.1007/s11269-016-1245-6
Herrera M, Canu S, Karatzoglou A, et al (2010) An approach to water supply clusters by semi-supervised learning
Izquierdo J, Herrera M, Montalvo I, Pérez-García R (2009) Division of water supply systems into district metered areas using a multi-agent based approach. In: International conference on software and data technologies. Springer, pp 167–180
Laucelli DB, Simone A, Berardi L, Giustolisi O (2016) Optimal design of district metering areas. Procedia Eng 162:403–410. https://doi.org/10.1016/j.proeng.2016.11.081
Lifshitz R, Ostfeld A (2018) District metering areas and pressure reducing valves trade-off in water distribution system leakage management. In: WDSA/CCWI joint conference proceedings
Liu J, Han R (2018) Spectral clustering and multicriteria decision for design of district metered areas. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000916
Morrison J, Tooms S, Rogers D (2007) DMA management guidance notes version 1. In: Brothers KJ, Eng P (eds) Water loss task force, vol 1. IWA, London, pp 25–36
Nicolini M, Zovatto L (2009) Optimal location and control of pressure reducing valves in water networks. J Water Resour Plan Manag 135:178–187. https://doi.org/10.1061/(asce)0733-9496(2009)135:3(178)
Oyedele A, Ajayi A, Oyedele LO et al (2021) Deep learning and boosted trees for injuries prediction in power infrastructure projects. Appl Soft Comput 110:107587. https://doi.org/10.1016/j.asoc.2021.107587
Pesantez JE, Berglund EZ, Mahinthakumar G (2019) Multiphase procedure to design district metered areas for water distribution networks. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0001095
Puust R, Kapelan Z, Savic DA, Koppel T (2010) A review of methods for leakage management in pipe networks. Urban Water J 7:25–45
Rakhshani H, Idoumghar L, Ghambari S et al (2021) On the performance of deep learning for numerical optimization: An application to protein structure prediction. Appl Soft Comput 110:107596. https://doi.org/10.1016/j.asoc.2021.107596
Saldarriaga J, Bohorquez J, Celeita D et al (2019) Battle of the water networks district metered areas. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0001035
Sela Perelman L, Allen M, Preis A et al (2015) Automated sub-zoning of water distribution systems. Environ Model Softw 65:1–14. https://doi.org/10.1016/j.envsoft.2014.11.025
Sharma AN, Dongre SR, Gupta R, Ormsbee L (2022) Multiphase procedure for identifying district metered areas in water distribution networks using community detection, NSGA-III optimization, and multiple attribute decision making. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0001586
Taha AF, Wang S, Guo Y et al (2021) Revisiting the water quality sensor placement problem: optimizing network observability and state estimation metrics. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0001374
Tiernan ED, Hodges BR (2022) A topological approach to partitioning flow networks for parallel simulation. J Comput Civ Eng. https://doi.org/10.1061/(asce)cp.1943-5487.0001020
Todini E (2000) Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2:115–122. https://doi.org/10.1016/s1462-0758(00)00049-2
Twort AC, Ratnayaka DD, Brandt MJ (2000) Water supply. Elsevier, Amsterdam
Tzatchkov VG, Alcocer-Yamanaka VH, Bourguett Ortíz V (2008) Graph theory based algorithms for water distribution network sectorization projects. In: Water distribution systems analysis symposium 2006
Wu Y, Liu S, Wu X et al (2016) Burst detection in district metering areas using a data driven clustering algorithm. Water Res 100:28–37. https://doi.org/10.1016/j.watres.2016.05.016
Yang T, Yu X, Ma N et al (2022) An autonomous channel deep learning framework for blood glucose prediction. Appl Soft Comput 120:108636. https://doi.org/10.1016/j.asoc.2022.108636
Zhang Q, Wu ZY, Zhao M et al (2017) Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization. J Water Resour Plan Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000819