Granzymes and Mitochondria
Biochemistry (Moscow) - 2020
Tóm tắt
Cytotoxic T lymphocytes and natural killer cells eliminate infected cells from the organism by triggering programmed cell death (apoptosis). The contents of the lytic granules of killer cells, including pore-forming proteins perforins and proteolytic enzymes granzymes, are released with the following penetration of the released proteins into the target cells. Granzyme B initiates mitochondria-dependent apoptosis via (i) proapoptotic Bid protein, (ii) Mcl-1 and Bim proteins, or (iii) p53 protein. As a result, cytochrome c is released from the mitochondria into the cytoplasm, causing formation of apoptosomes that initiate the proteolytic cascade of caspase activation. Granzymes M, H, and F cause cell death accompanied by the cytochrome c release from the mitochondria. Granzyme A induces generation of reactive oxygen species (ROS), which promotes translocation of the endoplasmic reticulum-associated SET complex to the nucleus where it is cleaved by granzyme A, leading to the activation of nucleases that catalyze single-strand DNA breaks. Granzymes A and B penetrate into the mitochondria and cleave subunits of the respiratory chain complex I. One of the complex I subunits is also a target for caspase-3. Granzyme-dependent damage to complex I leads to the ROS generation and cell death.
Từ khóa
Tài liệu tham khảo
Cullen, S. P., and Martin, S. J. (2008) Mechanisms of granule-dependent killing, Cell Death Differ., 15, 251–262. doi: 10.1038/sj.cdd.4402244.
Cullen, S. P., Brunet, M., and Martin, S. J. (2010) Granzymes in cancer and immunity, Cell Death Differ., 17, 616–623. doi: 10.1038/cdd.2009.206.
Wajant, H. (2014) Principles and mechanisms of CD95 activation, Biol. Chem., 395, 1401–1416. doi: 10.1515/hsz-2014-0212.
Siegmund, D., Lang, I., and Wajant, H. (2017) Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2, FEBS J., 284, 1131–1159. doi: 10.1111/febs.13968.
Tummers, B., and Green, D. R. (2017) Caspase-8: regulating life and death, Immunol. Rev., 277, 76–89. doi: 10.1111/imr.12541.
Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol., 15, 135–147. doi: 10.1038/nrm3737.
Tsuchiya, Y., Nakabayashi, O., and Nakano, H. (2015) FLIP the switch: regulation of apoptosis and necroptosis by cFLIP, Int. J. Mol. Sci., 16, 30321–30341. doi: 10.3390/ijms161226232.
Zhang, Y., Chen, X., Gueydan, C., and Han, J. (2018) Plasma membrane changes during programmed cell deaths, Cell Res., 28, 9–21. doi: 10.1038/cr.2017.133.
Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M., and Dustin, M. L. (1999) The immunological synapse: a molecular machine controlling T cell activation, Science, 285, 221–227. doi: 10.1126/science.285.5425.221.
Rousalova, I., and Krepela, E. (2010) Granzyme B-induced apoptosis in cancer cells and its regulation (review), Int. J. Oncol., 37, 1361–1378. doi: 10.3892/ijo-00000788.
Woodsworth, D. J., Dunsing, V., and Coombs, D. (2015) Design parameters for granzyme-mediated cytotoxic lymphocyte target-cell killing and specificity, Biophys. J., 109, 477–488. doi: 10.1016/j.bpj.2015.06.045.
Podack, E. R., and Munson, G. P. (2016) Killing of microbes and cancer by the immune system with three mammalian pore-forming killer proteins, Front. Immunol., 7, 464, doi: 10.3389/fimmu.2016.00464.
Stewart, S. E., D’Angelo, M. E., and Bird, P. I. (2012) Intercellular communication via the endo-lysosomal system: translocation of granzymes through membrane barriers, Biochim. Biophys. Acta, 1824, 59–67. doi: 10.1016/j.bbapap.2011.05.020.
Voskoboinik, I., Whisstock, J. C., and Trapani, J. A. (2015) Perforin and granzymes: function, dysfunction and human pathology, Nat. Rev. Immunol., 15, 388–400. doi: 10.1038/nri3839.
Andrin, C., Pinkoski, M. J., Burns, K., Atkinson, E. A., Krahenbuhl, O., Hudig, D., Fraser, S. A., Winkler, U., Tschopp, J., Opas, M., Bleackley, R. C., and Michalak, M. (1998) Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules, Biochemistry, 37, 10386–10394. doi: 10.1021/bi980595z.
Carafoli, E., and Krebs, J. (2016) Why calcium? How calcium became the best communicator, J. Biol. Chem., 291, 20849–20857. doi: 10.1074/jbc.R116.735894.
Davidovich, P., Kearney, C. J., and Martin, S. J. (2014) Inflammatory outcomes of apoptosis, necrosis and necroptosis, Biol. Chem., 395, 1163–1171. doi: 10.1515/hsz-2014-0164.
Thiery, J., Keefe, D., Boulant, S., Boucrot, E., Walch, M., Martinvalet, D., Goping, I. S., Bleackley, R. C., Kirchhausen, T., and Lieberman, J. (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells, Nat. Immunol., 12, 770–777. doi: 10.1038/ni.2050.
Masson, D., Nabholz, M., Estrade, C., and Tschopp, J. (1986) Granules of cytolytic T-lymphocytes contain two serine esterases, EMBO J., 5, 1595–1600.
Masson, D., and Tschopp, J. (1987) A family of serine esterases in lytic granules of cytolytic T lymphocytes, Cell, 49, 679–685. doi: 10.1016/0092-8674(87)90544-7.
Susanto, O., Trapani, J. A., and Brasacchio, D. (2012) Controversies in granzyme biology, Tissue Antigens, 80, 477–487. doi: 10.1111/tan.12014.
Vahedi, F., Fraleigh, N., Vlasschaert, C., McElhaney, J., and Hanifi-Moghaddam, P. (2014) Human granzymes: related but far apart, Med. Hypotheses, 83, 688–693. doi: 10.1016/j.mehy.2014.09.019.
Trapani, J. A. (2001) Granzymes: a family of lymphocyte granule serine proteases, Genome Biol., 2, reviews3014.1-3014.7, doi: 10.1186/gb-2001-2-12-reviews3014.
Sutton, V. R., Wowk, M. E., Cancilla, M., and Trapani, J. A. (2003) Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors, Immunity, 18, 319–329. doi: 10.1016/s1074-7613(03)00050-5.
Goping, I. S., Barry, M., Liston, P., Sawchuk, T., Constantinescu, G., Michalak, K. M., Shostak, I., Roberts, D. L., Hunter, A. M., Korneluk, R., and Bleackley, R. C. (2003) Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition, Immunity, 18, 355–365. doi: 10.1016/s1074-7613(03)00032-3.
Wowk, M. E., and Trapani, J. A. (2004) Cytotoxic activity of the lymphocyte toxin granzyme B, Microbes Infect., 6, 752–758. doi: 10.1016/j.micinf.2004.03.008.
Heibein, J. A., Goping, I. S., Barry, M., Pinkoski, M. J., Shore, G. C., Green, D. R., and Bleackley, R. C. (2000) Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax, J. Exp. Med., 192, 1391–1402. doi: 10.1084/jem.192.10.1391.
Wang, G. Q., Wieckowski, E., Goldstein, L. A., Gastman, B. R., Rabinovitz, A., Gambotto, A., Li, S., Fang, B., Yin, X. M., and Rabinowich, H. (2001) Resistance to granzyme B-mediated cytochrome c release in Bak-deficient cells, J. Exp. Med., 194, 1325–1337. doi: 10.1084/jem.194.9.1325.
Cosentino, K., and Garcia-Saez, A. J. (2017) Bax and Bak pores: are we closing the circle? Trends Cell Biol., 27, 266–275. doi: 10.1016/j.tcb.2016.11.004.
Kale, J., Osterlund, E. J., and Andrews, D. W. (2018) BCL-2 family proteins: changing partners in the dance towards death, Cell Death Differ., 25, 65–80. doi: 10.1038/cdd.2017.186.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell, 91, 479–489. doi: 10.1016/s0092-8674(00)80434-1.
Li, J., and Yuan, J. (2008) Caspases in apoptosis and beyond, Oncogene, 27, 6194–6206. doi: 10.1038/onc.2008.297.
Dorstyn, L., Akey, C. W., and Kumar, S. (2018) New insights into apoptosome structure and function, Cell Death Differ., 25, 1194–1208. doi: 10.1038/s41418-017-0025-z.
Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., and Alnemri, E. S. (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol. Cell, 1, 949–957. doi: 10.1016/s1097-2765(00)80095-7.
Chang, H. Y., and Yang, X. (2000) Proteases for cell suicide: functions and regulation of caspases, Microbiol. Mol. Biol. Rev., 64, 821–846. doi: 10.1128/mmbr.64.4.821-846.2000.
Li, Y., Zhou, M., Hu, Q., Bai, X.-C., Huang, W., Scheres, S. H. W., and Shi, Y. (2017) Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme, Proc. Natl. Acad. Sci. USA, 114, 1542–1547. doi: 10.1073/pnas.1620626114.
Darmon, A. J., Nicholson, D. W., and Bleackley, R. C. (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B, Nature, 377, 446–448. doi: 10.1038/377446a0.
Quan, L. T., Tewari, M., O’Rourke, K., Dixit, V., Snipas, S. J., Poirier, G. G., Ray, C., Pickup, D. J., and Salvesen, G. S. (1996) Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B, Proc. Natl. Acad. Sci. USA, 93, 1972–1976. doi: 10.1073/pnas.93.5.1972.
Luthi, A. U., and Martin, S. J. (2007) The CASBAH: a searchable database of caspase substrates, Cell Death Differ., 14, 641–650. doi: 10.1038/sj.cdd.4402103.
Julien, O., and Wells, J. A. (2017) Caspases and their substrates, Cell Death Differ., 24, 1380–1389. doi: 10.1038/cdd.2017.44.
Han, J., Goldstein, L. A., Gastman, B. R., Froelich, C. J., Yin, X. M., and Rabinowich, H. (2004) Degradation of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic events, J. Biol. Chem., 279, 22020–22029. doi: 10.1074/jbc.M313234200.
Han, J., Goldstein, L. A., Gastman, B. R., Rabinovitz, A., and Rabinowich, H. (2005) Disruption of Mcl-1⋅Bim complex in granzyme B-mediated mitochondrial apoptosis, J. Biol. Chem., 280, 16383–16392. doi: 10.1074/jbc.M411377200.
Matsumura, S., Van De Water, J., Kita, H., Coppel, R. L., Tsuji, T., Yamamoto, K., Ansari, A. A., and Gershwin, M. E. (2002) Contribution to antimitochondrial antibody production: cleavage of pyruvate dehydrogenase complex-E2 by apoptosis-related proteases, Hepatology, 35, 14–22. doi: 10.1053/jhep.2002.30280.
Siddiqui, W. A., Ahad, A., and Ahsan, H. (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update, Arch. Toxicol., 89, 289–317. doi: 10.1007/s00204-014-1448-7.
Sarosiek, K. A., Chi, X., Bachman, J. A., Sims, J. J., Montero, J., Patel, L., Flanagan, A., Andrews, D. W., Sorger, P., and Letai, A. (2013) BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response, Mol. Cell, 51, 751–765. doi: 10.1016/j.molcel.2013.08.048.
Ben Safta, T., Ziani, L., Favre, L., Lamendour, L., Gros, G., Mami-Chouaib, F., Martinvalet, D., Chouaib, S., and Thiery, J. (2015) Granzyme B-activated p53 interacts with Bcl-2 to promote cytotoxic lymphocyte-mediated apoptosis, J. Immunol., 194, 418–428. doi: 10.4049/jimmunol.1401978.
Wang, S., Xia, P., Shi, L., and Fan, Z. (2012) FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade, Cell Death Differ., 19, 605–615. doi: 10.1038/cdd.2011.130.
Hou, Q., Zhao, T., Zhang, H., Lu, H., Zhang, Q., Sun, L., and Fan, Z. (2008) Granzyme H induces apoptosis of target tumor cells characterized by DNA fragmentation and Bid-dependent mitochondrial damage, Mol. Immunol., 45, 1044–1055. doi: 10.1016/j.molimm.2007.07.032.
Ewen, C. L., Kane, K. P., and Bleackley, R. C. (2013) Granzyme H induces cell death primarily via a Bcl-2-sensitive mitochondrial cell death pathway that does not require direct Bid activation, Mol. Immunol., 54, 309–318. doi: 10.1016/j.molimm.2012.12.020.
Shi, L., Wu, L., Wang, S., and Fan, Z. (2009) Granzyme F induces a novel death pathway characterized by Bid-independent cytochrome c release without caspase activation, Cell Death Differ., 16, 1694–1706. doi: 10.1038/cdd.2009.101.
Van Damme, P., Maurer-Stroh, S., Hao, H., Colaert, N., Timmerman, E., Eisenhaber, F., Vandekerckhove, J., and Gevaert, K. (2010) The substrate specificity profile of human granzyme A, Biol. Chem., 391, 983–997. doi: 10.1515/BC.2010.096.
Beresford, P. J., Zhang, D., Oh, D. Y., Fan, Z., Greer, E. L., Russo, M. L., Jaju, M., and Lieberman, J. (2001) Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks, J. Biol. Chem., 276, 43285–43293. doi: 10.1074/jbc.M108137200.
Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., and Lieberman, J. (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor, Cell, 112, 659–672. doi: 10.1016/s0092-8674(03)00150-8.
Martinvalet, D., Zhu, P., and Lieberman, J. (2005) Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis, Immunity, 22, 355–370. doi: 10.1016/j.immuni.2005.02.004.
Grivennikova, V. G., and Vinogradov, A. D. (2003) Mitochondrial complex I, Uspekhi Biol. Khim., 43, 19–58.
Zhu, J., Vinothkumar, K. R., and Hirst, J. (2016) Structure of mammalian respiratory complex I, Nature, 536, 354–358. doi: 10.1038/nature19095.
Fiedorczuk, K., Letts, J. A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L. A. (2016) Atomic structure of the entire mammalian mitochondrial complex I, Nature, 538, 406–410. doi: 10.1038/nature19794.
Martinvalet, D., Dykxhoorn, D. M., Ferrini, R., and Lieberman, J. (2008) Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death, Cell, 133, 681–692. doi: 10.1016/j.cell.2008.03.032.
Jacquemin, G., Margiotta, D., Kasahara, A., Bassoy, E. Y., Walch, M., Thiery, J., Lieberman, J., and Martinvalet, D. (2015) Granzyme B-induced mitochondrial ROS are required for apoptosis, Cell Death Differ., 22, 862–874. doi: 10.1038/cdd.2014.180.
Ricci, J. E., Munoz-Pinedo, C., Fitzgerald, P., Bailly-Maitre, B., Perkins, G. A., Yadava, N., Scheffler, I. E., Ellisman, M. H., and Green, D. R. (2004) Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain, Cell, 117, 773–786. doi: 10.1016/j.cell.2004.05.008.
Hirst, J., and Roessler, M. M. (2016) Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I, Biochim. Biophys. Acta, 1857, 872–883. doi: 10.1016/j.bbabio.2015.12.009.
Rodenburg, R. J. (2016) Mitochondrial complex I-linked disease, Biochim. Biophys. Acta, 1857, 938–945. doi: 10.1016/j.bbabio.2016.02.012.
Chiusolo, V., Jacquemin, G., Yonca Bassoy, E., Vinet, L., Liguori, L., Walch, M., Kozjak-Pavlovic, V., and Martinvalet, D. (2017) Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis, Cell Death Differ., 24, 747–758. doi: 10.1038/cdd.2017.3.
Martinvalet, D. (2019) Mitochondrial entry of cytotoxic proteases: a new insight into the granzyme B cell death pathway, Oxid. Med. Cell. Longev., 2019, 9165214, doi: 10.1155/2019/9165214.
Grivennikova, V. G., and Vinogradov, A. D. (2006) Generation of superoxide by the mitochondrial complex I, Biochim. Biophys. Acta, 1757, 553–561. doi: 10.1016/ j.bbabio.2006.03.013.
Murphy, M. P. (2009) How mitochondria produce reactive oxygen species, Biochem. J., 417, 1–13. doi: 10.1042/BJ20081386.
Korge, P., Calmettes, G., and Weiss, J. N. (2016) Reactive oxygen species production in cardiac mitochondria after complex I inhibition: modulation by substrate-dependent regulation of the NADH/NAD+ ratio, Free Radic. Biol. Med., 96, 22–33. doi: 10.1016/j.freeradbiomed.2016.04.002.
Robb, E. L., Hall, A. R., Prime, T. A., Eaton, S., Szibor, M., Viscomi, C., James, A. M., and Murphy, M. P. (2018) Control of mitochondrial superoxide production by reverse electron transport at complex I, J. Biol. Chem., 293, 9869–9879. doi: 10.1074/jbc.RA118.003647.
Shidoji, Y., Hayashi, K., Komura, S., Ohishi, N., and Yagi, K. (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation, Biochem. Biophys. Res. Commun., 264, 343–347. doi: 10.1006/bbrc.1999.1410.
Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., Kini, V., Vlasova, I. I., Zhao, Q., Zou, M., Di, P., Svistunenko, D. A., Kurnikov, I. V., and Borisenko, G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nat. Chem. Biol., 1, 223–232. doi: 10.1038/nchembio727.
Lucken-Ardjomande, S., and Martinou, J.-C. (2008) Granzyme A, a stealth killer in the mitochondrion, Cell, 133, 568–570. doi: 10.1016/j.cell.2008.04.031.
Dotiwala, F., Mulik, S., Polidoro, R. B., Ansara, J. A., Burleigh, B. A., Walch, M., Gazzinelli, R. T., and Lieberman, J. (2016) Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites, Nat. Med., 22, 210–216. doi: 10.1038/nm.4023.
Kang, S., Brown, H. M., and Hwang, S. (2018) Direct antiviral mechanisms of interferon-gamma, Immune Netw., 18, e33, doi: 10.4110/in.2018.18.e33.
Hansen, T. H., and Bouvier, M. (2009) MHC class I antigen presentation: learning from viral evasion strategies, Nat. Rev. Immunol., 9, 503–513. doi: 10.1038/nri2575.
Vdovin, A. S., Filkin, S. Y., Yefimova, P. R., Sheetikov, S. A., Kapranov, N. M., Davydova, Y. O., Egorov, E. S., Khamaganova, E. G., Drokov, M. Y., Kuzmina, L. A., Parovichnikova, E. N., Efimov, G. A., and Savchenko, V. G. (2016) Recombinant MHC tetramers for isolation of virus-specific CD8+ cells from healthy donors: potential approach for cell therapy of post-transplant cytomegalovirus infection, Biochemistry (Moscow), 81, 1371–1383. doi: 10.1134/S0006297916110146.
Biron, C. A., and Brossay, L. (2001) NK cells and NKT cells in innate defense against viral infections, Curr. Opin. Immunol., 13, 458–464. doi: 10.1016/s0952-7915(00)00241-7.
Ruella, M., and Kalos, M. (2014) Adoptive immunotherapy for cancer, Immunol. Rev., 257, 14–38. doi: 10.1111/imr.12136.
Kim, N., Lee, H. H., Lee, H. J., Choi, W. S., Lee, J., and Kim, H. S. (2019) Natural killer cells as a promising therapeutic target for cancer immunotherapy, Arch. Pharm. Res., 42, 591–606. doi: 10.1007/s12272-019-01143-y.