Grain Boundary Diffusion and Segregation in Interstitial Solid Solutions Based on BCC Transition Metals: Carbon in Niobium

B. Bokstein1, I. Razumovskii2
1Institute of Steel and Alloys, Moscow, Russia
2OAO “Kompozit”, Korolev, Moscow District, Russia

Tóm tắt

Bulk and grain boundary (GB) diffusion of 14C in Nb has been studied by the radiotracer serial sectioning technique. B and C kinetic regimes were realized for GB diffusion in the temperature range from 800 to 1173 K. The values of P = sδD gb, D gb and s follow the Arrhenius dependencies: P = 5.15 × 10−15 exp[−(83.1 kJ/mol)/RT] m3/s (973–1173 K), D gb = 2.3 × 10−6 exp[−(133.0 kJ/mol)/RT] m2/s (800–950 K), and s = 4.7 exp[(49.9 kJ/mol)/RT]. The increase in the GB diffusion compared with self-diffusion is very large despite the probable retardation effect due to the strong segregation. The results for GB diffusion of C in Nb as well as for other interstitial solutes (P, S) in bcc transition metals (α- Fe, Mo) are discussed in the framework of the transition state theory. It is assumed that GB segregation decreases the energy of the ground state whereas the change in the diffusion mechanism (e.g. from vacancy to interstitial) leads to a strong decrease of the transition state energy. This change in the diffusion mechanism results in a fast GB diffusion of interstitial solutes in spite of their large tendency to segregate to GBs.

Từ khóa


Tài liệu tham khảo

S.Z. Bokshtein, S.S. Ginzburg, S.T. Kishkin, and L.M. Moroz, Electron-microscopical autoradiography in metallurgy. Metallurgiya, Moscow, 1978 (in Russian).

S.Z. Bokshtein, S.S. Ginzburg, S.T. Kishkin, I.M. Razumovskii, and G.B. Stroganov, Autoradiography of internal interfaces and structural stability of alloys. Metallurgiya, Moscow, 1987 (in Russian).

Y. Mishin and Chr. Herzig, Mater. Sci. Engng. A 260, 55 (1999).

T. Surholt, C. Minkvitz, and Chr. Herzig, Acta mater. 46, 1849 (1998).

J. Bernardini and P. Gas, Def. Dif. Forum 95-98, 393 (1993).

J. Bernardini, Def. Dif. Forum 66-69, 667 (1989).

B.S. Bokstein, V.E. Fradkov, and D.L. Beke, Phil. Mag. A 65, 277 (1992).

P. Gas, S. Poize, and J. Bernardini, Acta Met. 34, 359 (1986).

B.S. Bokstein, G.S. Nikolsky, and A.N. Smirnov, Phys. Met. Metallogr. 8, 140 (1991) (in Russian).

F. Moya and G.E. Moya-Gontier, J. Phys. C 4, 157 (1975).

L.G. Harrison, Trans. Faraday Soc. 57, 1191 (1961).

G. Martin and B. Perraillon, Proc. ASM (Metals Park, N.-Y., 1980), p. 239.

A. Atkinson and R.I. Taylor, Phil. Mag. A 45, 583 (1982).

I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interface Boundary Diffusion (Wiley, Chichester, N.-Y., 1995).

Chr. Herzig, J. Geise, and Y. Mishin, Acta Met. Mat. 41, 1683 (1993).

T. Surholt, Y. Mishin, and Chr. Herzig, Phys. Rev. B 50, 3577 (1994).

S. Divinski, M. Lohmann, and Chr. Herzig, Acta Mat. 49, 249 (2001).

M. Koppers, Y. Mishin, and Chr. Herzig, Acta Met. Mat. 42, 2859 (1994).

I. Razumovskii, Y. Mishin, and Chr. Herzig, Mater. Sci. Engng. 212, 45 (1996).

Y. Mishin and I. Razumovskii, Acta Met. 40, 597 (1992).

E. Budke, Chr. Herzig, and H. Wever, Phys. Status Solidi 127a,87 (1991).

A.D. Le Claire in Landolt-Bornstein, New Series, III/26, edited by H. Mehrer (Springer-Verlag, Berlin, 1990), p. 626.

L.B. Vasiljonok, B.S. Bokstein, E.N. Kablov, and I.M. Razumovskii, Dokl. Akad. Nauk (Reports of Russian Ac. Sc.) 375, 184 (2000) (in Russian).

R. Resnick and L.S. Castleman, Trans. AIME 218, 307 (1960).

B. Lesage and A.M. Hunt, Mem. Sci. Rev. Met. 73, 19 (1976).

P. Gruzin, V.V. Mural, and A.P. Fokin, Phys. Met. Metallogr. 34, 209 (1972).

P. Quiraldenq and P. Lacombe, Acta Met. 13, 51 (1965).

W. Gust, S. Mayer, A. Bogel, and B. Predel, J. Physique 46, C4–537 (1985).

S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes (N.-Y. and London, 1941).

E.D. Hondros and M.P. Seah, Int. Met. Rev. 222, 262 (1977).

M.P. Seah, J. Phys. F. 10, 1043 (1980).

V.T. Borisov, V.M. Golikov, and G. Scherbedinsky, Phys. Met. Metallogr. 17, 80 (1964) (in Russian).

D. Gupta, Met. Trans. A 8, 1431 (1977).