Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks

Biostatistics - Tập 7 Số 2 - Trang 302-317 - 2006
Hongzhe Li1, Jiang Gui1
1Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 920 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

BARABASI, A. L. AND OLTVAI, Z. N. (2004). Network biology: understanding the cell's functional organization. Nature Reviews Genetics5, 101–113.

DEMPSTER, A. P. (1972). Covariance selection. Biometrics28, 157–175.

DOBRA, A., JONES, B., HANS, C., NEVIS, J. AND WEST, M. (2004). Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis90, 196–212.

DRTON, M. AND PERLMAN, M. D. (2003). A SINful approach to model selection for Gaussian precision graphs. Technical Report. University of Washington.

EDWARDS, D. (2000). Introduction to Graphical Modelling, 2nd edition. New York: Springer.

FRIEDMAN, N. (2004). Inferring cellular networks using probabilistic graphical models. Science30, 799–805.

FRIEDMAN, J. H. AND POPESCU, B. E. (2004). Gradient directed regularization. Technical Report. Stanford University.

GARDNER, T. S., DI BERNARDO, D., LORENZ, D. AND COLLINS, J. J. (2003). Inferring genetic networks and identifying compound mode of action via expression profiling. Science301, 102–105.

GUI, J. AND LI, J. (2005). Threshold gradient descent method for censored data regression, with applications in pharmacogenomics. Pacific Symposium on Biocomputing10, 272–283.

IDEKER, T., THORSSON, V., RANISH, J. A., CHRISTMAS, R., BUHLER, J., ENG, J. K., BUMGARNER, R., GOODLETT, D. R., AEBERSOLD, R., AND HOOD, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292, 929– 934.

JEONG, H., MASON, S. P., BARABASI, A. L., AND OLTVAI, Z. N. (2001). Lethality and centrality in protein networks. Nature411, 41– 42.

JOHNSTONE, I. M. AND SILVERMAN, B. W. (2004). Needles and hay in haystacks: empirical Bayes estimates of possibly sparse sequences. Annals of Statistics32, 1594–1649.

LIN, S. P. AND PERLMAN, M. D. (1985). A Monte Carlo comparison of four estimators of a covariance matrix. In Krishnaish, P. R. (ed), Multivariate Analysis, Volume 6. Amsterdam: North-Holland, pp. 411–429.

MEINSHAUSEN, N. AND BUHLMANN, P. (2006). Consistent neighbourhood selection for high-dimensional graphs with the lasso. Annals of Statistics (in press).

SCHAFER, J. AND STRIMMER, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics21, 754–764.

SEGAL, E., SHAPIRA, M., REGEV, A., PE'ER, D., BOTSTEIN, D., KOLLER, D., AND FRIEDMAN, N. (2003). Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics34, 166– 176.

TAVAZOIE, S., HUGHES, J. D., CAMPBELL, M. J., CHO, R. J. AND CHURCH, G. M. (1999). Systematic determination of genetic network architecture. Nature Genetics22, 281–285.

TEGNER, J., YEUNG, M. K., HASTY, J., AND COLLINS, J. J. (2003). Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Science of the United States of America100, 5944–5949.

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal. Statistical Society Series B58, 267–288.

WILLE, A., ZIMMERMANN, P., VRANOVA, E., FURHOLZ, A., LAULE, O., BLEULER, S., HENNIG, L., PRELIC, A., VON ROHR, P., THIELE, L. et al. (2004). Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology5, 1–13.

ZOU, H., HASTIE, T. AND TINSHIRANI, R. (2004). On the “degrees of freedom” of the lasso. Technical Report. Department of Statistics, Stanford University.