Graded Identities and Central Polynomials for the Verbally Prime Algebras

Algebras and Representation Theory - Tập 26 - Trang 71-96 - 2021
Claudemir Fidelis1,2, Diogo Diniz1, Leomaques Bernardo1, Plamen Koshlukov3
1Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande, Brazil
2Instituto de Matemática e Estatística da, Universidade de São Paulo, São Paulo, Brazil
3Department of Mathematics, State University of Campinas, Campinas, Brazil

Tóm tắt

Let F be a field of characteristic zero and let R be an algebra that admits a regular grading by an abelian group H. Moreover, we consider G a group and let A be an algebra with a grading by the group G × H, we define the R-hull of A as the G × H-graded algebra given by $\mathfrak {R}(A)=\oplus _{(g,h)\in G\times H}A_{(g,h)}\otimes R_{h}$ . In this paper we provide a basis for the graded identities (resp. central polynomials) of the R-hull of A, assuming that a (suitable) basis for the graded identities (resp. central polynomials) of the G × H-graded algebra A is known. In particular, for any a, $b\in \mathbb {N}$ , we find a basis for the graded identities and the graded central polynomials for the algebra Ma,b(E), graded by the group $G\times \mathbb {Z}_{2}$ . Here E is the Grassmann algebra of an infinite dimensional F-vector space, equipped with its natural $\mathbb {Z}_{2}$ -grading and the matrix algebra Ma+b(F) is equipped with an elementary grading by the group $G\times \mathbb {Z}_{2}$ , so that its neutral component coincides with the subspace of the diagonal matrices. We describe the isomorphism classes of gradings on Ma,b(E) that arise in this way and count the isomorphism classes of such gradings. Moreover, we give an alternative proof of the fact that the tensor product Ma,b(E) ⊗ Mr,s(E) is PI-equivalent to Mar+bs,as+br(E). Finally, when the grading group is $\mathbb {Z}_{3}\times \mathbb {Z}_{2}$ (resp. $\mathbb {Z}\times \mathbb {Z}_{2}$ ), we present a complete description of a basis for the graded central polynomials for the algebra M2,1(E) (resp. Ma,b(E) in the case b = 1).

Tài liệu tham khảo

Aljadeff, E., Ofir, D.: On regular G-gradings. Trans. Amer. Math. Soc. 367, 4207–4233 (2015) Alves, S.M., Brandão, A.P., Koshlukov, P.: Graded central polynomials for T-prime algebras. Comm. Algebra 37(6), 2008–2020 (2009) Bahturin, Y., Drensky, V.: Graded polynomial identities of matrices. Linear Algebra Appl. 357(1-3), 15–34 (2002) Bahturin, Y.A., Sehgal, S.K., Zaicev, M.V.: Group gradings on associative algebras. J. Algebra 241(2), 677–698 (2001) Bahturin, Y., Yasumura, F.: Graded polynomial identities as identities of universal algebras. Linear Algebra Appl. 562, 1–14 (2019) Bemm, L., Fornaroli, E.Z., Santulo, E.A. Jr.: A cohomological point of view on gradings on algebras with multiplicative basis. J. Pure Appl. Algebra 223, 769–782 (2019) Bianchi, A., Diniz, D.: Identities and isomorphisms of finite-dimensional graded simple algebras. J. Algebra 526, 333–344 (2019) Borges, A.R., Fidelis, C., Diniz, D.: Graded isomorphisms on upper block triangular matrix algebras. Linear Algebra Appl. 543, 92–105 (2018) Brandão, A.: Graded central polynomials for the algebra mn(k). Rend. Circ. Mat. Palermo. 57(2), 265–278 (2008) Brandão, A., Koshlukov, P.: Central polynomials for \(\mathbb {Z}_{2}\)-graded algebras and for algebras with involution. J. Pure Appl. Algebra. 208(3), 877–886 (2007) Brandão, A.P., Koshlukov, P., Krasilnikov, A., da Silva, E.́A.: The central polynomials for the Grassmann algebra, Israel. J. Math. 179(1), 127–144 (2010) Centrone, L.: \(\mathbb {Z}_{2}\)-graded identities of the Grassmann algebra in positive characteristic. Linear Algebra Appl. 435(12), 3297–3313 (2011) Colombo, J., Koshlukov, P.: Central polynomials in the matrix algebra of order two. Linear Algebra Appl. 377, 53–67 (2004) Diniz, D.: Graded identities for elementary gradings in matrix algebras over infinite fields. Linear Algebra Appl. 439(5), 1530–1537 (2013) Diniz, D., Fidelis, C., Mota, S.: Identities and central polynomials for real graded division algebras, Internat. J. Algebra Comput. 27(7), 935–952 (2017) Diniz, D., de Mello, T.C.: Graded identities of block-triangular matrices. J. Algebra 464, 246–265 (2016) Di Vincenzo, O.M.: On the graded identities of m1,1(e), Israel. J. Math. 80, 323–335 (1992) Di Vincenzo, O.M., Nardozza, V.: Graded polynomial identities for tensor products by the Grassmann algebra. Comm. Algebra 31(3), 1453–1474 (2003) Di Vincenzo, O.M., Nardozza, V.: Graded polynomial identities of verbally prime algebras. J. Algebra Appl. 6(3), 385–401 (2007) Drensky, V.: A minimal basis of identities for a second-order matrix algebra over a field of characteristic 0. Algebra i Logika 20(3), 282–290 (1980). (Russian). Translation: Algebra and Logic 20 (3), (1981) 188–194 Fonseca, L.F.G.: On the graded central polynomials for elementary gradings in matrix algebras. Rend. Circ. Mat. Palermo. 62(2), 237–244 (2013) Formanek, E.: Central polynomials for matrix rings. J. Algebra 23 (1), 129–133 (1972) Giambruno, A., Koshlukov, P.: On the identities of the Grassmann algebras in characteristic p > 0. Israel J. Math. 122(1), 305–316 (2001) Kemer, A.R.: Varieties and \(\mathbb {Z}_{2}\)-graded algebras. Izv. Akad. Nauk SSSR Ser. Mat. 48(5), 1042–1059 (1984). (Russian). Translation: Math. USSR Izv. 25 (2) (1985), 359–374 Kemer, A.R.: Ideals of Identities of Associative Algebras Translations of Mathematical Monographs, vol. 87. Americal Mathematical Society, Providence, RI (1991) Koshlukov, P.: Basis of the identities of the matrix algebra of order two over a field of characteristic p≠ 2. J. Algebra 241(1), 410–434 (2001) Koshlukov, P., Azevedo, S.S.: Graded identities for T-prime algebras over fields of positive characteristic. Israel J. Math. 128(1), 157–176 (2002) Krakowski, D., Regev, A.: The polynomial identities of the Grassmann algebra. Trans. Amer. Math. Soc. 181, 429–438 (1973) Latyshev, V.N.: On the choice of basis in a T-ideal. Sibirsk. Mat. Z. 4(5), 1122–1126 (1963). (Russian) Okhitin, S.: Central polynomials of an algebra of second-order matrices. Moscow Univ. Math. Bull. 43(4), 49–51 (1988) Popov, A.P.: Identities of the tensor square of a Grassmann Algebra. Algebra i Logika 21(4), 442–471 (1982). (Russian). Translation: Algebra and Logic 21 (4) (1982), 296–316 Razmyslov, Yu.P.: Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero. Algebra i Logika 12(1), 83–113 (1973). (Russian). Translation: Algebra and Logic 12, (1973) 47–63 Razmyslov, Yu.P.: On a problem of Kaplansky (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 37, 483–501 (1973). (Russian). Translation: Math. USSR Izv. 7 (3) (1973), 479–496 Razmyslov, Yu.P., identities, Trace: Central polynomials in matrix superalgebras mk,l. Mat. Sb. (N S.) 128 (170): 2 (10), 194–215 (1985). (Russian). Translation: Math. USSR-Sb. 56 (1) (1987), 187–206 Regev, A., Seeman, T.: \(\mathbb {Z}_{2}\)-graded tensor product of p.i. algebras. J. Algebra 291(1), 274–296 (2005) Vasilovsky, S.Yu.: \(\mathbb {Z}\)-graded polynomial identities of the full matrix algebra. Comm. Algebra 26(2), 601–612 (1998) Vasilovsky, S.Yu.: \(\mathbb {Z}_{n}\)-graded polynomial identities of the full matrix algebra of order n. Proc. Amer. Math. Soc. 127(12), 3517–3524 (1999)