Gorenstein algebras presented by quadrics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahn, J., Migliore, J.: Some geometric results arising from the Borel fixed property. J. Pure Appl. Algebra 209, 337–360 (2007)
Ahn, J., Shin, Y.: Generic initial ideals and graded Artinian-level algebras not having the Weak-Lefschetz Property. J. Pure Appl. Algebra 210, 855–879 (2007)
Ananyan, T., Hochster, M.: Ideals generated by quadratic polynomials. Math. Res. Lett. 19(01), 233–244 (2012)
Bernstein, D., Iarrobino, A.: A non-unimodal graded Gorenstein Artin algebra in codimension five. Comm. Algebra 20(8), 2323–2336 (1992)
CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. http://cocoa.dima.unige.it
Davis, E., Geramita, A.V., Orecchia, F.: Gorenstein algebras and the Cayley–Bacharach theorem. Proc. Am. Math. Soc. 93, 593–597 (1985)
Eisenbud, D., Green, M., Harris, J.: Cayley-Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295–324 (1996)
Ein, L., Lazarsfeld, R.: Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invent. Math. 111, 51–67 (1993)
Fröberg, R.: Koszul algebras, advances in commutative ring theory (Fez, 1997), 337350, Lecture Notes in Pure and Appllied Mathemetics, 205, Dekker, New York (1999)
Geramita, A.V.: Inverse systems of fat points: waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals. In: The Curves Seminar at Queen’s, vol. X (Kingston, ON, 1995), pp. 2–114, Queen’s Papers in Pure and Appl. Math., vol. 102, Queen’s University, Kingston, ON (1996)
Green, M.: Generic initial ideals, in: “Six Lectures on Commutative Algebra,” 119–186, Progress in Math. 66, Birkhäser, Basel (1998)
Harima, T., Migliore, J., Nagel, U., Watanabe, J.: The weak and strong Lefschetz properties for artinian $$K$$ -algebras. J. Algebra 262, 99–126 (2003)
Huneke, C., Ulrich, B.: General Hyperplane Sections of Algebraic Varieties. J. Algebraic Geom. 2, 487–505 (1993)
Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci, Appendix C by Iarrobino and Steven L. Kleiman. Lecture Notes in Mathematics 1721, Springer-Verlag, Berlin (1999)
Ikeda, H.: Results on Dilworth and Rees numbers of Artinian local rings. Japan. J. Math. (N.S.) 22, 147–158 (1996)
Migliore, J.: Introduction to Liaison theory and deficiency modules, progress in Mathematics 165. Birkhäuser, Boston (1998)
Migliore, J., Nagel, U.: Liaison and related topics: notes from the Torino workshop-school. Rend. Sem. Mat. Univ. Pol. Torino 59(2), 59–126 (2001)
Migliore, J., Anello, F.: The strength of the Weak Lefschetz property. Illinois J. Math. 52(4), 1417–1431 (2008)
Migliore, J., Mir’o-Roig, R., Nagel, U.: Monomial almost complete intersections and the weak Lefschetz property. Trans. Am. Math. Soc. 363(1), 229–257 (2011)
Migliore, J., Mir’o-Roig, R., Nagel, U.: On the weak Lefschetz property for powers of linear forms. Algebra Number Theory 6, 487–526 (2012)
Nagel, U., Pitteloud, Y.: On graded Betti numbers and geometrical properties of projective varieties. Manuscripta Math 84, 291–314 (1994)
Reid, L., Roberts, L., Roitman, M.: On complete intersections and their Hilbert functions. Canad. Math. Bull. 34(4), 525–535 (1991)
Shokurov, V.V.: Noether-enriques, the theorem on canonical curves (in Russian), Mat. Sbornik 86: 367–408; English transl. Math. USSR Sbornik 15(1971), 361–404 (1971)
Stanley, R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebraic Discret. Methods 1, 168–184 (1980)
Stanley, R.: Combinatorics and commutative algebra, progress in mathematics, vol. 41, 2nd edn. Birkhäuser, Boston (1996)
Watanabe, J.: The dilworth number of artinian rings and finite posets with rank function, Commutative Algebra and Combinatorics, Advanced Studies in Pure Math, vol. 1. Kinokuniya Co. North Holland, Amsterdam (1987)