Gorenstein algebras presented by quadrics

Collectanea Mathematica - Tập 64 Số 2 - Trang 211-233 - 2013
Juan Migliore1, Uwe Nagel2
1Department of Mathematics, University of Notre Dame, Notre Dame, USA
2Department of Mathematics, University of Kentucky, Lexington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahn, J., Migliore, J.: Some geometric results arising from the Borel fixed property. J. Pure Appl. Algebra 209, 337–360 (2007)

Ahn, J., Shin, Y.: Generic initial ideals and graded Artinian-level algebras not having the Weak-Lefschetz Property. J. Pure Appl. Algebra 210, 855–879 (2007)

Ananyan, T., Hochster, M.: Ideals generated by quadratic polynomials. Math. Res. Lett. 19(01), 233–244 (2012)

Bernstein, D., Iarrobino, A.: A non-unimodal graded Gorenstein Artin algebra in codimension five. Comm. Algebra 20(8), 2323–2336 (1992)

CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. http://cocoa.dima.unige.it

Davis, E., Geramita, A.V., Orecchia, F.: Gorenstein algebras and the Cayley–Bacharach theorem. Proc. Am. Math. Soc. 93, 593–597 (1985)

Eisenbud, D., Green, M., Harris, J.: Cayley-Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295–324 (1996)

Ein, L., Lazarsfeld, R.: Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invent. Math. 111, 51–67 (1993)

Fröberg, R.: Koszul algebras, advances in commutative ring theory (Fez, 1997), 337350, Lecture Notes in Pure and Appllied Mathemetics, 205, Dekker, New York (1999)

Geramita, A.V.: Inverse systems of fat points: waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals. In: The Curves Seminar at Queen’s, vol. X (Kingston, ON, 1995), pp. 2–114, Queen’s Papers in Pure and Appl. Math., vol. 102, Queen’s University, Kingston, ON (1996)

Green, M.: Generic initial ideals, in: “Six Lectures on Commutative Algebra,” 119–186, Progress in Math. 66, Birkhäser, Basel (1998)

Harima, T., Migliore, J., Nagel, U., Watanabe, J.: The weak and strong Lefschetz properties for artinian $$K$$ -algebras. J. Algebra 262, 99–126 (2003)

Hoa, L.T., Trung, N.V.: Borel-fixed ideals and reduction number. J. Algebra 270(1), 335–346 (2003)

Huneke, C., Ulrich, B.: General Hyperplane Sections of Algebraic Varieties. J. Algebraic Geom. 2, 487–505 (1993)

Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci, Appendix C by Iarrobino and Steven L. Kleiman. Lecture Notes in Mathematics 1721, Springer-Verlag, Berlin (1999)

Ikeda, H.: Results on Dilworth and Rees numbers of Artinian local rings. Japan. J. Math. (N.S.) 22, 147–158 (1996)

Kunz, E.: Almost complete intersections are not Gorenstein rings. J. Algebra 28, 111–115 (1974)

Migliore, J.: Introduction to Liaison theory and deficiency modules, progress in Mathematics 165. Birkhäuser, Boston (1998)

Migliore, J., Nagel, U.: Liaison and related topics: notes from the Torino workshop-school. Rend. Sem. Mat. Univ. Pol. Torino 59(2), 59–126 (2001)

Migliore, J., Anello, F.: The strength of the Weak Lefschetz property. Illinois J. Math. 52(4), 1417–1431 (2008)

Migliore, J., Mir’o-Roig, R., Nagel, U.: Monomial almost complete intersections and the weak Lefschetz property. Trans. Am. Math. Soc. 363(1), 229–257 (2011)

Migliore, J., Mir’o-Roig, R., Nagel, U.: On the weak Lefschetz property for powers of linear forms. Algebra Number Theory 6, 487–526 (2012)

Nagel, U., Pitteloud, Y.: On graded Betti numbers and geometrical properties of projective varieties. Manuscripta Math 84, 291–314 (1994)

Reid, L., Roberts, L., Roitman, M.: On complete intersections and their Hilbert functions. Canad. Math. Bull. 34(4), 525–535 (1991)

Shokurov, V.V.: Noether-enriques, the theorem on canonical curves (in Russian), Mat. Sbornik 86: 367–408; English transl. Math. USSR Sbornik 15(1971), 361–404 (1971)

Stanley, R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebraic Discret. Methods 1, 168–184 (1980)

Stanley, R.: Combinatorics and commutative algebra, progress in mathematics, vol. 41, 2nd edn. Birkhäuser, Boston (1996)

Watanabe, J.: The dilworth number of artinian rings and finite posets with rank function, Commutative Algebra and Combinatorics, Advanced Studies in Pure Math, vol. 1. Kinokuniya Co. North Holland, Amsterdam (1987)