Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases

Michael Gusenbauer1
1Institute of Innovation Management, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adamick, J., & Reznik-Zellen, R. (2010). Trends in large-scale subject repositories. D-Lib Magazine, 16(11/12), 3.

Aguillo, I. F. (2012). Is Google Scholar useful for bibliometrics? A webometric analysis. Scientometrics, 91, 343–351. https://doi.org/10.1007/s11192-011-0582-8 .

Bar-Ilan, J. (2008). Informetrics at the beginning of the 21st century—A review. Journal of Informetrics, 2, 1–52. https://doi.org/10.1016/j.joi.2007.11.001 .

Bharat, K., & Broder, A. (1998). A technique for measuring the relative size and overlap of public Web search engines. Computer Networks and ISDN Systems, 30, 379–388. https://doi.org/10.1016/s0169-7552(98)00127-5 .

Bornmann, L., & Mutz, R. (2014). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the Association for Information Science and Technology, 66, 2215–2222. https://doi.org/10.1002/asi.23329 .

Brophy, J., & Bawden, D. (2005). Is Google enough? Comparison of an internet search engine with academic library resources. Aslib Proceedings, 57, 498–512. https://doi.org/10.1108/00012530510634235 .

Caragea, C., Wu, J., Ciobanu, A., Williams, K., Fernández-Ramírez, J., Chen, H.-H., et al. (2014). CiteSeer x: A Scholarly Big Dataset. In M. de Rijke, A. P. de Vries, C. Zhai, F. de Jong, K. Radinsky, & K. Hofmann (Eds.), 36th European conference on IR research, Amsterdam, The Netherlands, April 13–16 2014 (Vol. 8416, pp. 311–322), LNCS sublibrary. SL 3, Information systems and application, incl. Internet/Web and HCI). Cham: Springer. https://doi.org/10.1007/978-3-319-06028-6_26 .

Chadegani, A. A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., et al. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18–26.

Croft, W. B., Metzler, D., & Strohman, T. (2015). Search engines: Information retrieval in practice. Boston: Pearson.

de Winter, Joost C. F., Zadpoor, A. A., & Dodou, D. (2014). The expansion of Google Scholar versus Web of Science: A longitudinal study. Scientometrics, 98, 1547–1565. https://doi.org/10.1007/s11192-013-1089-2 .

Delgado López-Cózar, E., Orduna-Malea, E., & Martín-Martín, A. (2018). Google Scholar as a data source for research assessment. In W. Glaenzel, H. Moed, & U. Schmoch (Eds.), Springer handbook of science and technology indicators. Berlin: Springer.

Duke, L. M., & Asher, A. D. (Eds.). (2012). College libraries and student culture: What we now know. Chicago: American Library Association.

Eastman, C. M., & Jansen, B. J. (2003). Coverage, relevance, and ranking. ACM Transactions on Information Systems, 21, 383–411. https://doi.org/10.1145/944012.944015 .

Georgas, H. (2014). Google vs. the library (part II): Student search patterns and behaviors when using Google and a federated search tool. Portal: Libraries and the Academy, 14(4), 503–532.

Grigas, V., Juzėnienė, S., & Veličkaitė, J. (2016). ‘Just Google it’: The scope of freely available information sources for doctoral thesis writing. Information Research: An International Electronic Journal, 22(1), n1.

Haines, L. L., Light, J., O’Malley, D., & Delwiche, F. A. (2010). Information-seeking behavior of basic science researchers: Implications for library services. Journal of the Medical Library Association: JMLA, 98, 73–81. https://doi.org/10.3163/1536-5050.98.1.019 .

Halevi, G., Moed, H., & Bar-Ilan, J. (2017). Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation: Review of the literature. Journal of Informetrics, 11, 823–834. https://doi.org/10.1016/j.joi.2017.06.005 .

Harzing, A.-W. (2014). A longitudinal study of Google Scholar coverage between 2012 and 2013. Scientometrics, 98, 565–575. https://doi.org/10.1007/s11192-013-0975-y .

Harzing, A.-W., & Alakangas, S. (2017). Microsoft Academic is one year old: The Phoenix is ready to leave the nest. Scientometrics, 112, 1887–1894. https://doi.org/10.1007/s11192-017-2454-3 .

Hawking, D., Craswell, N., Bailey, P., & Griffiths, K. (2001). Measuring search engine quality. Information Retrieval, 4, 33–59. https://doi.org/10.1023/a:1011468107287 .

Hood, W. W., & Wilson, C. S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52, 291–314. https://doi.org/10.1023/a:1017919924342 .

Hug, S. E., & Braendle, M. P. (2017). The coverage of Microsoft academic: Analyzing the publication output of a university. Scientometrics, 113, 1551–1571. https://doi.org/10.1007/s11192-017-2535-3 .

Jacsó, P. (2005). Google Scholar: the pros and the cons. Online Information Review, 29, 208–214. https://doi.org/10.1108/14684520510598066 .

Jacsó, P. (2008). Google Scholar revisited. Online Information Review, 32, 102–114. https://doi.org/10.1108/14684520810866010 .

Jacsó, P. (2012). Using Google Scholar for journal impact factors and the h-index in nationwide publishing assessments in academia—Siren songs and air-raid sirens. Online Information Review, 36, 462–478. https://doi.org/10.1108/14684521211241503 .

Jamali, H. R., & Asadi, S. (2010). Google and the scholar: The role of Google in scientists’ information-seeking behaviour. Online Information Review, 34, 282–294. https://doi.org/10.1108/14684521011036990 .

Jansen, B. J., & Spink, A. (2003). An analysis of web documents retrieved and viewed. In P. Langendoerfer & O. Droegehorn (Eds.), 4th International conference on internet computing, Las Vegas, Nevada, 23–26 June (pp. 65–69).

Khabsa, M., & Giles, C. L. (2014). The number of scholarly documents on the public web. PLoS ONE, 9, 1–6. https://doi.org/10.1371/journal.pone.0093949 .

Khan, S., Liu, X., Shakil, K. A., & Alam, M. (2017). A survey on scholarly data: From big data perspective. Information Processing and Management, 53, 923–944. https://doi.org/10.1016/j.ipm.2017.03.006 .

Lawrence, S., & Giles, C. L. (1999). Accessibility of information on the web. Nature, 400, 107–109. https://doi.org/10.1038/21987 .

Martín-Martín, A., Orduña-Malea, E., Ayllón, J. M., & López-Cózar, E. D. (2015). Does Google Scholar contain all highly cited documents (1950–2013)? Granada: EC3 Working Papers (19).

Martín-Martín, A., Orduna-Malea, E., & Delgado López-Cózar, E. (2018a). Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: A multidisciplinary comparison. Scientometrics, 116, 2175–2188. https://doi.org/10.1007/s11192-018-2820-9 .

Martín-Martín, A., Orduna-Malea, E., Harzing, A.-W., & Delgado López-Cózar, E. (2017). Can we use Google Scholar to identify highly-cited documents? Journal of Informetrics, 11, 152–163. https://doi.org/10.1016/j.joi.2016.11.008 .

Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018b). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12, 1160–1177. https://doi.org/10.31235/osf.io/42nkm .

Mayr, P., & Walter, A.-K. (2007). An exploratory study of Google Scholar. Online Information Review, 31, 814–830. https://doi.org/10.1108/14684520710841784 .

Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus Scopus and Google Scholar. Journal of the American Society for Information Science and Technology, 58, 2105–2125. https://doi.org/10.1002/asi.20677 .

Mingers, J., & Meyer, M. (2017). Normalizing Google Scholar data for use in research evaluation. Scientometrics, 112, 1111–1121. https://doi.org/10.1007/s11192-017-2415-x .

Orduña-Malea, E., Ayllón, J. M., Martín-Martín, A., & Delgado López-Cózar, E. (2014). About the size of Google Scholar: playing the numbers. EC3 Working Papers, 18(23).

Orduña-Malea, E., Ayllón, J. M., Martín-Martín, A., & Delgado López-Cózar, E. (2015). Methods for estimating the size of Google Scholar. Scientometrics, 104, 931–949. https://doi.org/10.1007/s11192-015-1614-6 .

Orduña-Malea, E., & Delgado López-Cózar, E. (2014). Google Scholar Metrics evolution: An analysis according to languages. Scientometrics, 98, 2353–2367. https://doi.org/10.1007/s11192-013-1164-8 .

Orduña-Malea, E., Martín-Martín, A., Ayllon, J. M., & Delgado López-Cózar, E. (2014b). The silent fading of an academic search engine: The case of Microsoft Academic Search. Online Information Review, 38, 936–953. https://doi.org/10.1108/oir-07-2014-0169 .

Orduna-Malea, E., Martín-Martín, A., & López-Cózar, E. D. (2017). Google Scholar as a source for scholarly evaluation: A bibliographic review of database errors. Revista española de Documentación Científica, 40(4), 185.

Ortega, J. L. (2014). Academic search engines: A quantitative outlook (Chandos information professional series). Oxford: Chandos Publishing.

Oxford University Press. (2008). Oxford wordlist. Oxford: Oxford University Press.

Pederson, J. P. (2001). International directory of company histories (International Directory of Company Histories Ser) (Vol. 40). Farmington Hills: Saint James Press. (Imprint); Cengage Gale.

Prins, A. A. M., Costas, R., van Leeuwen, T. N., & Wouters, P. F. (2016). Using Google Scholar in research evaluation of humanities and social science programs: A comparison with Web of Science data. Research Evaluation, 25, 264–270. https://doi.org/10.1093/reseval/rvv049 .

Shariff, S. Z., Bejaimal, S. A., Sontrop, J. M., Iansavichus, A. V., Haynes, R. B., Weir, M. A., et al. (2013). Retrieving clinical evidence: A comparison of PubMed and Google Scholar for quick clinical searches. Journal of Medical Internet Research. https://doi.org/10.2196/jmir.2624 .

Shultz, M. (2007). Comparing test searches in PubMed and Google Scholar. Journal of the Medical Library Association: JMLA, 95, 442–445. https://doi.org/10.3163/1536-5050.95.4.442 .

Thelwall, M. (2008). Bibliometrics to webometrics. Journal of Information Science, 34, 605–621. https://doi.org/10.1177/0165551507087238 .

Thelwall, M. (Ed.). (2009). Introduction to webometrics: Quantitative web research for the social sciences (Synthesis lectures on information concepts, retrieval, and services) (Vol. 4). San Francisco: Morgan & Claypool Publishers.

Thelwall, M. (2018). Microsoft Academic automatic document searches: Accuracy for journal articles and suitability for citation analysis. Journal of Informetrics, 12, 1–9. https://doi.org/10.1016/j.joi.2017.11.001 .

Valderrama-Zurián, J.-C., Aguilar-Moya, R., Melero-Fuentes, D., & Aleixandre-Benavent, R. (2015). A systematic analysis of duplicate records in Scopus. Journal of Informetrics, 9, 570–576. https://doi.org/10.1016/j.joi.2015.05.002 .

van Noorden, R. (2014). Online collaboration: Scientists and the social network. Nature, 512, 126–129. https://doi.org/10.1038/512126a .

Vaughan, L., & Thelwall, M. (2004). Search engine coverage bias: Evidence and possible causes. Information Processing and Management, 40, 693–707. https://doi.org/10.1016/s0306-4573(03)00063-3 .

Wilkinson, D., & Thelwall, M. (2013). Search markets and search results: The case of Bing. Library & Information Science Research, 35, 318–325. https://doi.org/10.1016/j.lisr.2013.04.006 .

Wu, J., Liang, C., Yang, H., & Giles, C. L. (2016). CiteseerX Data: Semanticizing scholarly papers. In F. Özcan & G. Koutrika (Eds.), 2016 ACM SIGMOD/PODS Conference, San Francisco, California, 26 June–01 July 2016. New York, New York, USA: ACM. https://doi.org/10.1145/2928294.2928306 .