Google Earth Engine: Planetary-scale geospatial analysis for everyone

Remote Sensing of Environment - Tập 202 - Trang 18-27 - 2017
Noel Gorelick1, M. Hancher2, Mike Dixon2, Simon Ilyushchenko2, David Thau2, Rebecca Moore2
1Google Switzerland, Brandschenkestrasse 110, Zurich 8002, Switzerland
2Google Inc., 1600 Amphitheater Parkway, Mountain View, CA 94043, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abadi, 2016

Barroso, 2013, The datacenter as a computer: an introduction to the design of warehouse-scale machines, Synth. Lect. Comput. Archit., 8, 1

Câmara, 2000, TerraLib: technology in support of GIS innovation. Proc. II Brazilian Symposium on GeoInformatics, 2, 1

Chambers, 2010, FlumeJava: easy, efficient data-parallel pipelines, ACM SIGPLAN Not., 45, 363, 10.1145/1809028.1806638

Chang, 2008, Bigtable: a distributed storage system for structured data, ACM Trans. Comput. Syst., 26, 4, 10.1145/1365815.1365816

Climate Engine

Collect Earth

Coltin, 2016, Automatic boosted flood mapping from satellite data, Int. J. Remote Sens., 37, 993, 10.1080/01431161.2016.1145366

Copernicus Data Access Policy

Corbett, 2013, Spanner: Google's globally distributed database, ACM Trans. Comput. Syst., 31, 8, 10.1145/2491245

Cossu, 2010, A roadmap for a dedicated earth science grid platform, Earth Sci. Inf., 3, 10.1007/s12145-010-0045-4

Dong, 2016, Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine, Remote Sens. Environ, 185, 142, 10.1016/j.rse.2016.02.016

Fikes

Ghemawat, 2003, The Google file system, Proc. SOSP, 29, 10.1145/945445.945450

Global Forest Watch

Gonzalez, 2015

Gonzalez, 2010, Google fusion tables: web-centered data management and collaboration, ACM SIGMOD, 1061

Hansen, 2013, High-resolution global maps of 21st-century forest cover change, Science, 342, 850, 10.1126/science.1244693

Hughes, 2015, GeoMesa: a distributed architecture for spatio-temporal fusion

Joshi, 2016, Tracking changes and preventing loss in critical tiger habitat, Sci. Adv., 2, 10.1126/sciadv.1501675

Lobell, 2015, A scalable satellite-based crop yield mapper, Remote Sens. Environ., 164, 324, 10.1016/j.rse.2015.04.021

Loveland, 2012, Landsat: Building a strong future, Remote Sens. Environ., 122, 22, 10.1016/j.rse.2011.09.022

Map of Life

Masek, 2006, A Landsat surface reflectance dataset for North America, 1990–2000, Geosci. Remote Sensing Lett. IEEE, 3, 68, 10.1109/LGRS.2005.857030

Nemani, 2011, Collaborative supercomputing for global change science, EOS Trans. Am. Geophys. Union, 92, 109, 10.1029/2011EO130001

Patel, 2015, Multitemporal settlement and population mapping from Landsat using google earth engine, Int. J. Appl. Earth Obs. Geoinf., 35, 199, 10.1016/j.jag.2014.09.005

Pekel, 2016, High-resolution mapping of global surface water and its long-term changes, Nature, 10.1038/nature20584

Soulard, 2016, Continuous 1985–2012 Landsat monitoring to assess fire effects on meadows in Yosemite National Park, California, Remote Sens., 8, 371, 10.3390/rs8050371

Sturrock, 2014, Fine-scale malaria risk mapping from routine aggregated case data, Malar. J., 13, 1, 10.1186/1475-2875-13-421

Tigani, 2014

Verma, 2015

Whitman, 2014, 73

Woodcock, 2008, Free access to Landsat imagery, Science, 320, 1011, 10.1126/science.320.5879.1011a

Yu, 2015, Geospark: a cluster computing framework for processing large-scale spatial data

Zhang, 2015, Building a better urban picture: combining day and night remote sensing imagery, Remote Sens., 7, 11887, 10.3390/rs70911887