Goodness-of-fit tests based on the empirical characteristic function
Tóm tắt
Từ khóa
Tài liệu tham khảo
T. Anderson and D. Darling, Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes, Ann. Math. Stat., 23(2):193–212, 1952.
T. Anderson and D. Darling, The Kolmogorov–Smirnov, Cramer–von Mises tests, Ann. Math. Stat., 28(3):823–838, 1957.
A. Bakshaev and R. Rudzkis, Goodness of fit tests based on kernel density estimators, Informatica, 24(3):447–460, 2013.
A. Bakshaev and R. Rudzkis, Multivariate goodness of fit tests based on kernel density estimators, Nonlinear Anal. Model. Control, 20(4):585–602, 2015.
P.J. Bickel and M. Rosenblatt, On some global measures of the deviations of density function estimates, Ann. Stat., 1(6):1071–1095, 1973.
Y. Fan, Tests for a multivariate distribution by the empirical characteristic function, J. Multivariate Anal., 62:36–63, 1997.
A. Feuerverger and R.A. Mureika, The empirical characteristic function and its application, Ann. Stat., 5(1):88–97, 1977.
N. Henze, Invariant tests for multivariate normality: A critical review, Stat. Pap., 43(4):467–506, 2002.
N. Henze and L. Baringhaus, A consistent test for multivariate normality based on the empirical characteristic function, Metrika, 35:339–348, 1998.
N. Henze and T. Wagner, A new approach to the BHEP tests for multivariate normality, J. Multivariate Anal., 62:1–27, 1997.
N. Henze and B. Zirklers, A class of invariant and consistent tests for multivariate normality, J. Multivariate Anal., 19:3595–3617, 1990.
M. Huskova and S.G. Meintanis, Testing procedures based on the empirical characteristic functions I: Goodness-of-fit, testing for symmetry and independence, Tatra Mt. Math. Publ., 39:225–233, 2008a.
M. Huskova and S.G. Meintanis, Testing procedures based on the empirical characteristic functions II: k-sample problem, change point problem, Tatra Mt. Math. Publ., 39:235–243, 2008b.
C.M. Jarque and A.K. Bera, Efficient tests for normality, homoscedasticity and serial independence of regression residuals, Econ. Lett., 6:255–259, 1980.
C.M. Jarque and A.K. Bera, A test for normality of observations and regression residuals, Int. Stat. Rev., 55:163–172, 1987.
M.D. Jimenez-Gamero, V. Alba-Fernández, J. Munoz-Garcia, and Y. Chalco-Cano, Goodness-of-fit tests based on empirical characteristic functions, Comput. Stat. Data Anal., 53(12):3957–3971, 2009.
A. Justel, D. Pena, and R. Zamar, A multivariate Kolmogorov–Smirnov test of goodness of fit, Stat. Probab. Lett., 35:251–259, 1997.
A.N. Kolmogorov, Sulla determinazione empririca di una legge di distribuzione, G. Ist. Ital. Attuari, 4:1–11, 1933.
I.A. Koutrouvelis, A goodness-of-fit test of simple hypothesis based on the empirical characteristic function, Biometrika, 67:238–240, 1980.
I.A. Koutrouvelis and J. Kellermeier, A goodness-of-fit test based on the empirical characteristic function when parameters must be estimated, J. R. Stat. Soc., Ser. B, 43:173–176, 1981.
K.V. Mardia, Measures of multivariate skewness and kurtosis with applications, Biometrika, 57:519–530, 1970.
G. Martynov, Omega-Square Criteria, Nauka, Moscow, 1978.
S.G. Meintanis, J. Ngatchou-Wandj, and E. Taufer, Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function, J. Multivariate Anal., 140:171–192, 2015.
J. Pudelko, On a new affine invariant and consistent test for multivariate normality, Probab. Math. Stat., 25:43–54, 2005.
L.B. Pulley and T.W. Epps, A test for normality based on the empirical characteristic function, Biometrika, 70:723–726, 1983.
M. Rosenblatt, On the maximal deviation of k-dimensional density estimates, Ann. Probab., 4(6):1009–1015, 1976.
R. Rudzkis, On the distribution of supremum-type functionals of nonparametric estimates of probability and spectral densities, Theory Probab. Appl., 37(2):236–249, 1992a.
R. Rudzkis, Probabilities of large excursions of empirical processes and fields, Sov. Math., Dokl., 45(1):226–228, 1992b.
R. Rudzkis and A. Bakshaev, Probabilities of high excursions of Gaussian fields, Lith. Math. J., 52(2):196–213, 2012.
S.S. Shapiro and M.B. Wilk, An analysis of variance test for normality, Biometrika, 52:591–611, 1965.
N.V. Smirnov, Approximate laws of distribution of random variables from empirical data, Usp. Mat. Nauk, 10:179–206, 1944.
C. Tenreiro, An affine invariant multiple test procedure for assessing multivariate normality, Comput. Stat. Data Anal., 55(12):1980–1992, 2011.
M. Towhidi and M. Salmanpour, A new goodness-of-fit test based on the empirical characteristic function, Commun. Stat., Theory Methods, 36:2777–2785, 2007.
W.K. Wong and C.H. Sim, Goodness-of-fit test based on empirical characterisitc function, J. Stat. Comput. Simulation, 65:243–269, 2007.
G. Yang, The Energy Goodness-of-Fit Test for Univariate Stable Distributions, PhD dissertation, Graduate College of Bowling Green State University, Bowling Green, OH, 2012.