Good deal hedging and valuation under combined uncertainty about drift and volatility

Dirk Becherer1, Klebert Kentia2
1Institut für Mathematik, Humboldt Universität, Unter den Linden 6, Berlin, 10099, Germany
2Institut für Mathematik, Goethe–Universität, Frankfurt am Main, D-60054, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Artzner, P, Delbaen, F, Eber, JM, Heath, D: Coherent measures of risk. Math. Finance. 9(3), 203–228 (1999).

Avellaneda, M, Levy, A, Paras, A: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance. 2(2), 73–88 (1995).

Barrieu, P, El Karoui, N: Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Carmona, R (ed.)Indifference Pricing: Theory and Applications, pp. 77–146. Princeton University Press, Princeton (2009).

Becherer, D: From bounds on optimal growth towards a theory of good-deal hedging. In: Albrecher, H, Runggaldier, W, Schachermayer, W (eds.)Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics, vol 8, pp. 27–52. De Gruyter, Berlin (2009).

Becherer, D, Kentia, K: Hedging under generalized good-deal bounds and model uncertainty. Math. Meth. Oper. Res. 86(1), 171–214 (2017).

Bertsekas, DP, Shreve, SE: Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York (1978).

Biagini, S, Pınar, MÇ: The robust Merton problem of an ambiguity averse investor. Math. Financ. Econ. 11(1), 1–24 (2017).

Biagini, S, Bouchard, B, Kardaras, C, Nutz, M: Robust fundamental theorem for continuous processes. Math. Finance. 27(4), 963–987 (2017).

Bielecki, T, Cialenco, I, Pitera, M: A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probab. Uncertain. Quant. Risk. 2:52, paper no.3 (2017). doi: 10.1186/s41546-017-0012-9 .

Bielecki, TR, Cialenco, I, Zhang, Z: Dynamic coherent acceptability indices and their applications to finance. Math. Finance. 24(3), 411–441 (2014).

Björk, T, Slinko, I: Towards a general theory of good-deal bounds. Rev. Finance. 10(2), 221–260 (2006).

Cerný, A, Hodges, SD: The theory of good-deal pricing in financial markets. In: Geman, H, DP M, Plinska, S, Vorst, T (eds.)Mathematical Finance - Bachelier Congress 2000, pp. 175–202. Springer, Berlin (2002).

Chen, Z, Epstein, LG: Ambiguity, risk and asset returns in continuous time. Econometrica. 70(4), 1403–1443 (2002).

Cochrane, J, Saá-Requejo, J: Beyond arbitrage: good deal asset price bounds in incomplete markets. J. Polit. Econ. 108(1), 79–119 (2000).

Delbaen, F: The structure of m-stable sets and in particular of the set of risk neutral measures. In: Séminaire de Probabilités XXXIX, Lecture Notes in Math. 1874, pp. 215–258. Springer, Berlin (2006).

Delbaen, F, Schachermayer, W: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(1), 463–520 (1994).

Denis, L, Martini, C: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2), 827–852 (2006).

Denis, L, Hu, M, Peng, S: Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal. 34(2), 139–161 (2011).

Ekeland, I, Temam, R: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999).

El Karoui, N, Jeanblanc-Picqué, M, Shreve, SE: Robustness of the Black and Scholes formula. Math. Finance. 8(2), 93–126 (1998).

Epstein, LG, Ji, S: Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud. 26(7), 1740–1786 (2013).

Epstein, LG, Ji, S: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econom. 50, 269–282 (2014).

Garlappi, L, Uppal, R, Wang, T: Portfolio selection with parameter and model uncertainty: A multi-prior approach. Rev. Financ. Stud. 20(1), 41–81 (2007).

Gilboa, I, Schmeidler, D: Maxmin expected utility with non-unique prior. J. Math. Econom. 18(2), 141–153 (1989).

Hu, M, Ji, S, Peng, S, Song, Y: Backward stochastic differential equations driven by G-Brownian motion. Stoch. Process. Appl. 124(1), 759–784 (2014a).

Hu, M, Ji, S, Yang, S: A stochastic recursive optimal control problem under the G-expectation framework. Appl. Math. Optim. 70(2), 253–278 (2014b).

Karandikar, RL: On path-wise stochastic integration. Stoch. Process. Appl. 57(1), 11–18 (1995).

Kentia, K: Robust aspects of hedging and valuation in incomplete markets and related backward SDE theory. PhD thesis. Humboldt-Universität zu Berlin (2015). doi: http://dx.doi.org/10.18452/17463 .

Klöppel, S, Schweizer, M: Dynamic utility-based good-deal bounds. Stat. Dec. 25(4), 285–309 (2007).

Kramkov, D: Optional decomposition of supermartingales and hedging in incomplete security markets. Probab. Theory Relat. Fields. 105(4), 459–479 (1996).

Lyons, TJ: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance. 2(2), 117–133 (1995).

Madan, D, Cherny, A: Markets as a counterparty: an introduction to conic finance. Int. J. Theor. Appl. Finance. 13(8), 1149–1177 (2010).

Matoussi, A, Possamaï, D, Zhou, C: Robust utility maximization in nondominated models with 2BSDE: the uncertain volatility model. Math. Finance. 25(2), 258–287 (2015).

Neufeld, A, Nutz, M: Superreplication under volatility uncertainty for measurable claims. Electron. J. Probab. 18(48), 1–14 (2013).

Neufeld, A, Nutz, M: Robust utility maximization with Lévy processes. Forthcom. Math. Finance (2016). doi: 10.1111/mafi.12139 .

Nutz, M: Path-wise construction of stochastic integrals. Electron. Commun. Probab. 17(24), 1–7 (2012a).

Nutz, M: A quasi-sure approach to the control of non-Markovian stochastic differential equations. Electron. J. Probab. 17(23), 1–23 (2012b).

Nutz, M, van Handel, R: Constructing sublinear expectations on path space. Stoch. Process. Appl. 123(8), 3100–3121 (2013).

Nutz, M, Soner, M: Superhedging and dynamic risk measures under volatility uncertainty. SIAM J. Control. Optim. 50(4), 2065–2089 (2012).

Øksendal, B, Sulem, A: Forward–backward stochastic differential games and stochastic control under model uncertainty. J. Optim. Theory Appl. 161(1), 22–55 (2014).

Peng, S: G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In: Stochastic analysis and applications. The Abel symposium 2005, Abel Symposia book series, vol 2, pp. 541–567. Springer, Berlin (2007).

Possamaï, D, Tan, X, Zhou, C: Stochastic control for a class of nonlinear kernels and applications. ArXiv e-print arXiv:1510.08439v1. To appear in Ann Prob (2018). (to be published in 2018). https://arxiv.org/pdf/1510.08439v1.pdf .

Quenez, MC: Optimal portfolio in a multiple-priors model. In: Dalang, R, Dozzi, M, Russo, F (eds.)Seminar on Stochastic Analysis, Random Fields and Applications IV, Progress in Probability, vol 58, pp. 291–321. Birkhäuser, Basel (2004).

Rockafellar, RT: Integral functionals, normal integrands and measurable selections. In: Waelbroeck, L (ed.)Nonlinear Operators and Calculus of Variations, Lecture Notes in Mathematics 543, pp. 157–207. Springer, Berlin (1976).

Rosazza Gianin, E, Sgarra, C: Acceptability indexes via g-expectations: an application to liquidity risk. Math. Financ. Econ. 7(4), 457–475 (2013).

Schied, A: Optimal investments for risk- and ambiguity-averse preferences: a duality approach. Finance. Stoch. 11(1), 107–129 (2007).

Schweizer, M: A guided tour through quadratic hedging approaches. In: Jouini, E, Cvitanić, J, Musiela, M (eds.)Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge University Press, Cambridge (2001).

Soner, HM, Touzi, N, Zhang, J: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67), 1844–1879 (2011).

Soner, HM, Touzi, N, Zhang, J: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields. 153(1-2), 149–190 (2012).

Soner, HM, Touzi, N, Zhang, J: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013).

Tevzadze, R, Toronjadze, T, Uzunashvili, T: Robust utility maximization for a diffusion market model with misspecified coefficients. Financ. Stoch. 17(3), 535–563 (2013).

Vorbrink, J: Financial markets under volatility uncertainty. J Math. Econom. 53, 64–78 (2014). special Section: Economic Theory of Bubbles (I).