Good deal hedging and valuation under combined uncertainty about drift and volatility
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artzner, P, Delbaen, F, Eber, JM, Heath, D: Coherent measures of risk. Math. Finance. 9(3), 203–228 (1999).
Avellaneda, M, Levy, A, Paras, A: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance. 2(2), 73–88 (1995).
Barrieu, P, El Karoui, N: Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Carmona, R (ed.)Indifference Pricing: Theory and Applications, pp. 77–146. Princeton University Press, Princeton (2009).
Becherer, D: From bounds on optimal growth towards a theory of good-deal hedging. In: Albrecher, H, Runggaldier, W, Schachermayer, W (eds.)Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics, vol 8, pp. 27–52. De Gruyter, Berlin (2009).
Becherer, D, Kentia, K: Hedging under generalized good-deal bounds and model uncertainty. Math. Meth. Oper. Res. 86(1), 171–214 (2017).
Bertsekas, DP, Shreve, SE: Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York (1978).
Biagini, S, Pınar, MÇ: The robust Merton problem of an ambiguity averse investor. Math. Financ. Econ. 11(1), 1–24 (2017).
Biagini, S, Bouchard, B, Kardaras, C, Nutz, M: Robust fundamental theorem for continuous processes. Math. Finance. 27(4), 963–987 (2017).
Bielecki, T, Cialenco, I, Pitera, M: A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probab. Uncertain. Quant. Risk. 2:52, paper no.3 (2017). doi: 10.1186/s41546-017-0012-9 .
Bielecki, TR, Cialenco, I, Zhang, Z: Dynamic coherent acceptability indices and their applications to finance. Math. Finance. 24(3), 411–441 (2014).
Björk, T, Slinko, I: Towards a general theory of good-deal bounds. Rev. Finance. 10(2), 221–260 (2006).
Cerný, A, Hodges, SD: The theory of good-deal pricing in financial markets. In: Geman, H, DP M, Plinska, S, Vorst, T (eds.)Mathematical Finance - Bachelier Congress 2000, pp. 175–202. Springer, Berlin (2002).
Chen, Z, Epstein, LG: Ambiguity, risk and asset returns in continuous time. Econometrica. 70(4), 1403–1443 (2002).
Cochrane, J, Saá-Requejo, J: Beyond arbitrage: good deal asset price bounds in incomplete markets. J. Polit. Econ. 108(1), 79–119 (2000).
Delbaen, F: The structure of m-stable sets and in particular of the set of risk neutral measures. In: Séminaire de Probabilités XXXIX, Lecture Notes in Math. 1874, pp. 215–258. Springer, Berlin (2006).
Delbaen, F, Schachermayer, W: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(1), 463–520 (1994).
Denis, L, Martini, C: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2), 827–852 (2006).
Denis, L, Hu, M, Peng, S: Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal. 34(2), 139–161 (2011).
El Karoui, N, Jeanblanc-Picqué, M, Shreve, SE: Robustness of the Black and Scholes formula. Math. Finance. 8(2), 93–126 (1998).
Epstein, LG, Ji, S: Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud. 26(7), 1740–1786 (2013).
Epstein, LG, Ji, S: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econom. 50, 269–282 (2014).
Garlappi, L, Uppal, R, Wang, T: Portfolio selection with parameter and model uncertainty: A multi-prior approach. Rev. Financ. Stud. 20(1), 41–81 (2007).
Gilboa, I, Schmeidler, D: Maxmin expected utility with non-unique prior. J. Math. Econom. 18(2), 141–153 (1989).
Hu, M, Ji, S, Peng, S, Song, Y: Backward stochastic differential equations driven by G-Brownian motion. Stoch. Process. Appl. 124(1), 759–784 (2014a).
Hu, M, Ji, S, Yang, S: A stochastic recursive optimal control problem under the G-expectation framework. Appl. Math. Optim. 70(2), 253–278 (2014b).
Kentia, K: Robust aspects of hedging and valuation in incomplete markets and related backward SDE theory. PhD thesis. Humboldt-Universität zu Berlin (2015). doi: http://dx.doi.org/10.18452/17463 .
Klöppel, S, Schweizer, M: Dynamic utility-based good-deal bounds. Stat. Dec. 25(4), 285–309 (2007).
Kramkov, D: Optional decomposition of supermartingales and hedging in incomplete security markets. Probab. Theory Relat. Fields. 105(4), 459–479 (1996).
Lyons, TJ: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance. 2(2), 117–133 (1995).
Madan, D, Cherny, A: Markets as a counterparty: an introduction to conic finance. Int. J. Theor. Appl. Finance. 13(8), 1149–1177 (2010).
Matoussi, A, Possamaï, D, Zhou, C: Robust utility maximization in nondominated models with 2BSDE: the uncertain volatility model. Math. Finance. 25(2), 258–287 (2015).
Neufeld, A, Nutz, M: Superreplication under volatility uncertainty for measurable claims. Electron. J. Probab. 18(48), 1–14 (2013).
Neufeld, A, Nutz, M: Robust utility maximization with Lévy processes. Forthcom. Math. Finance (2016). doi: 10.1111/mafi.12139 .
Nutz, M: Path-wise construction of stochastic integrals. Electron. Commun. Probab. 17(24), 1–7 (2012a).
Nutz, M: A quasi-sure approach to the control of non-Markovian stochastic differential equations. Electron. J. Probab. 17(23), 1–23 (2012b).
Nutz, M, van Handel, R: Constructing sublinear expectations on path space. Stoch. Process. Appl. 123(8), 3100–3121 (2013).
Nutz, M, Soner, M: Superhedging and dynamic risk measures under volatility uncertainty. SIAM J. Control. Optim. 50(4), 2065–2089 (2012).
Øksendal, B, Sulem, A: Forward–backward stochastic differential games and stochastic control under model uncertainty. J. Optim. Theory Appl. 161(1), 22–55 (2014).
Peng, S: G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In: Stochastic analysis and applications. The Abel symposium 2005, Abel Symposia book series, vol 2, pp. 541–567. Springer, Berlin (2007).
Possamaï, D, Tan, X, Zhou, C: Stochastic control for a class of nonlinear kernels and applications. ArXiv e-print arXiv:1510.08439v1. To appear in Ann Prob (2018). (to be published in 2018). https://arxiv.org/pdf/1510.08439v1.pdf .
Quenez, MC: Optimal portfolio in a multiple-priors model. In: Dalang, R, Dozzi, M, Russo, F (eds.)Seminar on Stochastic Analysis, Random Fields and Applications IV, Progress in Probability, vol 58, pp. 291–321. Birkhäuser, Basel (2004).
Rockafellar, RT: Integral functionals, normal integrands and measurable selections. In: Waelbroeck, L (ed.)Nonlinear Operators and Calculus of Variations, Lecture Notes in Mathematics 543, pp. 157–207. Springer, Berlin (1976).
Rosazza Gianin, E, Sgarra, C: Acceptability indexes via g-expectations: an application to liquidity risk. Math. Financ. Econ. 7(4), 457–475 (2013).
Schied, A: Optimal investments for risk- and ambiguity-averse preferences: a duality approach. Finance. Stoch. 11(1), 107–129 (2007).
Schweizer, M: A guided tour through quadratic hedging approaches. In: Jouini, E, Cvitanić, J, Musiela, M (eds.)Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge University Press, Cambridge (2001).
Soner, HM, Touzi, N, Zhang, J: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67), 1844–1879 (2011).
Soner, HM, Touzi, N, Zhang, J: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields. 153(1-2), 149–190 (2012).
Soner, HM, Touzi, N, Zhang, J: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013).
Tevzadze, R, Toronjadze, T, Uzunashvili, T: Robust utility maximization for a diffusion market model with misspecified coefficients. Financ. Stoch. 17(3), 535–563 (2013).