Good and semi-strong colorings of oriented planar graphs

Information Processing Letters - Tập 51 Số 4 - Trang 171-174 - 1994
André Raspaud1, Éric Sopena1
1LaBRI, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alberston, 1977, Every planar graph has an acyclic 7-coloring, Israel J. Math., 28, 169, 10.1007/BF02759792

Borodin, 1979, On acyclic coloring of planar graphs, Discrete Math., 25, 211, 10.1016/0012-365X(79)90077-3

Courcelle, 1994, The monadic second order logic of graphs VI: On several representations of graphs by relational structures, Discrete Appl. Math., 54, 10.1016/0166-218X(94)90019-1

Grünbaum, 1973, Acyclic coloring of planar graphs, Israel J. Math., 14, 390, 10.1007/BF02764716

Harary, 1972

Hell, 1990, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48, 92, 10.1016/0095-8956(90)90132-J

Kostochka, 1976, Acyclic 6-coloring of planar graph, Discretny Analys. Novosibirsk, 28, 40

Maurer, 1981, Colorings and interpretations: A connection between graphs and grammar forms, Discrete Appl. Math., 3, 119, 10.1016/0166-218X(81)90037-8

Mitchem, 1974, Every planar graph has an acyclic 8-coloring, Duke Math. J., 41, 177, 10.1215/S0012-7094-74-04119-2

Nash-Williams, 1964, Decomposition of finite graphs into forest, J. London Math. Soc., 39, 10.1112/jlms/s1-39.1.12

E. Sopena, On the chromatic number of oriented partial k-trees, Internal Report, University Bordeaux I, submitted.