Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice

Cancer Letters - Tập 269 Số 1 - Trang 57-66 - 2008
Erin B. Dickerson1, Erik C. Dreaden2, Xiaohua Huang2, Ivan H. El‐Sayed3, Hunghao Chu2, Sujatha Pushpanketh2, John F. McDonald1, Mostafa A. El‐Sayed2
1School of Biology, Ovarian Cancer Institute, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
2Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, NW, Atlanta, GA 30332-0400, USA
3Otolaryngology-Head and Neck Surgery, Comprehensive Cancer Center, University of California at San Francisco, CA 94143, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ferrari, 2005, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 161, 10.1038/nrc1566

Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994

Katz, 2004, Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications, Angew. Chem. Int. Edit., 43, 6042, 10.1002/anie.200400651

Moghimi, 2001, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev., 53, 283

Niemeyer, 2001, Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Edit., 40, 4128, 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S

Rosi, 2005, Nanostructures in biodiagnostics, Chem. Rev., 105, 1547, 10.1021/cr030067f

Weissleder, 2001, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316, 10.1038/86684

Huang, 2007, Gold nanoparticles and nanorods in medicine: from cancer diagnostics to photothermal therapy, Nanomedicine, 2, 681, 10.2217/17435889.2.5.681

Burda, 2005, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025, 10.1021/cr030063a

Liz-Marzan, 2006, Tailoring surface plasmons through the morphology and assembly of metal nanoparticles, Langmuir, 22, 32, 10.1021/la0513353

Noguez, 2007, Surface plasmons on metal nanoparticles: the influence of shape and physical environment, J. Phys. Chem. C, 111, 3806, 10.1021/jp066539m

Pileni, 2007, Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties, Acc. Chem. Res., 40, 685, 10.1021/ar6000582

Adams, 2003, Charge transfer on the nanoscale: current status, J. Phys. Chem. B, 107, 6668, 10.1021/jp0268462

Thomas, 1996, Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets, Nature, 383, 145, 10.1038/383145a0

Daniel, 2004, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104, 293, 10.1021/cr030698+

Huh, 2005, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals, J. Am. Chem. Soc., 127, 12387, 10.1021/ja052337c

Durr, 2007, Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods, Nano Lett., 7, 941, 10.1021/nl062962v

Sokolov, 2003, Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles, Cancer Res., 63, 1999

Wang, 2005, In vitro and in vivo two-photon luminescence imaging of single gold nanorods, Proc. Natl. Acad. Sci. USA, 102, 15752, 10.1073/pnas.0504892102

El-Sayed, 2005, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer, Nano Lett., 5, 829, 10.1021/nl050074e

Loo, 2005, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett., 5, 709, 10.1021/nl050127s

Johannsen, 2005, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique, Int. J. Hyperthermia, 21, 637, 10.1080/02656730500158360

Kam, 2005, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. USA, 102, 11600, 10.1073/pnas.0502680102

Chen, 2007, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett., 7, 1318, 10.1021/nl070345g

El-Sayed, 2006, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett., 239, 129, 10.1016/j.canlet.2005.07.035

Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 100, 13549, 10.1073/pnas.2232479100

Huang, 2006, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115, 10.1021/ja057254a

Pitsillides, 2003, Selective cell targeting with light-absorbing microparticles and nanoparticles, Biophys. J., 84, 4023, 10.1016/S0006-3495(03)75128-5

Tong, 2007, Gold nanorods mediate tumor cell death by compromising membrane integrity, Adv. Mater., 19, 3136, 10.1002/adma.200701974

Zharov, 2003, Photothermal detection of local thermal effects during selective nanophotothermolysis, Appl. Phys. Lett., 83, 4897, 10.1063/1.1632546

Connor, 2005, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 1, 325, 10.1002/smll.200400093

Khan, 2007, Molecular effects of uptake of gold nanoparticles in HeLa cells, Chembiochem, 8, 1237, 10.1002/cbic.200700165

Shukla, 2005, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview, Langmuir, 21, 10644, 10.1021/la0513712

El-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n

Link, 2000, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem., 19, 409, 10.1080/01442350050034180

Mie, 1908, Contribution to the optics of turbid media, especially colloidal metal suspensions, Ann. Phys., 25, 377, 10.1002/andp.19083300302

Huang, 2007, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp and polarized surface Raman spectra: a potential cancer diagnostic marker, Nano Lett., 7, 1591, 10.1021/nl070472c

Moskovits, 1985, Surface-enhanced spectroscopy, Rev. Mod. Phys., 57, 783, 10.1103/RevModPhys.57.783

Stuart, 2006, In vivo glucose measurement by surface-enhanced Raman spectroscopy, Anal. Chem., 78, 7211, 10.1021/ac061238u

Amin, 1993, Hepatic metastases – interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment, Radiology, 187, 339, 10.1148/radiology.187.2.8475270

Eichler, 2001, Oligonodular hepatocellular carcinoma (HCC): MR-guided laser-induced thermotherapy (LITT), Radiology, 41, 915, 10.1007/s001170170063

Nolsoe, 1993, Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-Yag laser with a diffuser tip – a pilot clinical-study, Radiology, 187, 333, 10.1148/radiology.187.2.8475269

Falk, 2001, Hyperthermia in oncology, Int. J. Hyperthermia, 17, 1, 10.1080/02656730150201552

Hildebrandt, 2002, The cellular and molecular basis of hyperthermia, Crit. Rev. Oncol. Hematol., 43, 33, 10.1016/S1040-8428(01)00179-2

Horsman, 2007, Hyperthermia: a potent enhancer of radiotherapy, Clin. Oncol., 19, 418, 10.1016/j.clon.2007.03.015

Wust, 2002, Hyperthermia in combined treatment of cancer, Lancet Oncol., 3, 487, 10.1016/S1470-2045(02)00818-5

Dewey, 1994, Arrhenius relationships from the molecule and cell to the clinic, Int. J. Hyperthermia, 10, 457, 10.3109/02656739409009351

O’neal, 2004, Photothermal tumor ablation in mice using near infrared absorbing nanoshells, Cancer Lett., 209, 171, 10.1016/j.canlet.2004.02.004

Sultan, 1990, Tumour ablation by laser in general surgery, Lasers Med. Sci., 5, 185, 10.1007/BF02031380

Rau, 2000, Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters, Int. J. Radiat. Oncol. Biol. Phys., 48, 381, 10.1016/S0360-3016(00)00650-7

Song, 1996, Tumour oxygenation is increased by hyperthermia at mild temperatures, Int. J. Hyperthermia, 12, 367, 10.3109/02656739609022525

Issels, 2001, Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study, Eur. J. Cancer, 37, 1599, 10.1016/S0959-8049(01)00183-6

Overgaard, 1995, Randomized trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant-melanoma, Lancet, 345, 540, 10.1016/S0140-6736(95)90463-8

Rau, 1998, Preoperative hyperthermia combined with radiochemotherapy in locally advanced rectal cancer – a phase II clinical trial, Ann. Surg., 227, 380, 10.1097/00000658-199803000-00010

Van Der Zee, 2000, Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial, Lancet, 355, 1119, 10.1016/S0140-6736(00)02059-6

Vernon, 1996, Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials, Int. J. Radiat. Oncol. Biol. Phys., 35, 731, 10.1016/0360-3016(96)00154-X

Mckenziei, 1984, Lasers in surgery and medicine, Phys. Med. Biol., 29, 619, 10.1088/0031-9155/29/6/001

Svaasand, 1990, On the physical rationale of laser induced hyperthermia, Lasers Med. Sci., 5, 121, 10.1007/BF02031373

Brunetaud, 1995, Non-PDT uses of lasers in oncology, Lasers Med. Sci., 10, 3, 10.1007/BF02133156

Chen, 1995, Chromophore-enhanced in-vivo tumor-cell destruction using an 808-Nm diode-laser, Cancer Lett., 94, 125, 10.1016/0304-3835(95)03837-M

Chen, 1997, Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment, Cancer Lett., 115, 25, 10.1016/S0304-3835(97)04707-1

Chen, 1996, Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study, Cancer Lett., 98, 169, 10.1016/S0304-3835(06)80028-5

Dolmans, 2003, Photodynamic therapy for cancer, Nat. Rev. Cancer, 3, 380, 10.1038/nrc1071

Dougherty, 1998, Photodynamic therapy, J. Nat. Cancer Inst., 90, 889, 10.1093/jnci/90.12.889

Henderson, 1992, How does photodynamic therapy work?, J. Photochem. Photobiol., 55, 145, 10.1111/j.1751-1097.1992.tb04222.x

Elisseeff, 1999, Transdermal photopolymerization for minimally invasive implantation, Proc. Natl. Acad. Sci. USA, 96, 3104, 10.1073/pnas.96.6.3104

Murphy, 2005, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846

Nikoobakht, 2003, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mat., 15, 1957, 10.1021/cm020732l

Wiley, 2007, Synthesis of silver nanostructures with controlled shapes and properties, Acc. Chem. Res., 40, 1067, 10.1021/ar7000974

Huang, 2007, Plasmonic photothermal therapy using gold nanoparticles, Lasers Med. Sci. ASAP

Huang, 2007, The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy, Lasers Surg. Med., 39, 747, 10.1002/lsm.20577

Huff, 2007, Hyperthermic effects of gold nanorods on tumor cells, Nanomedicine, 2, 125, 10.2217/17435889.2.1.125

Hu, 2006, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084, 10.1039/b517615h

Gans, 1915, Form of ultramicroscopic particles of silver, Ann. Phys., 47, 270, 10.1002/andp.19153521006

Gole, 2004, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed, Chem. Mat., 16, 3633, 10.1021/cm0492336

Perez-Juste, 2005, Gold nanorods: synthesis, characterization and applications, Coord. Chem. Rev., 249, 1870, 10.1016/j.ccr.2005.01.030

Harris, 2003, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug Discov., 2, 214, 10.1038/nrd1033

Huff, 2007, Controlling the cellular uptake of gold nanorods, Langmuir, 23, 1596, 10.1021/la062642r

Liao, 2005, Gold nanorod bioconjugates, Chem. Mat., 17, 4636, 10.1021/cm050935k

Niidome, 2006, PEG-modified gold nanorods with a stealth character for in vivo applications, J. Control. Release, 114, 343, 10.1016/j.jconrel.2006.06.017

Maeda, 2001, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Adv. Enzyme Regul., 41, 189, 10.1016/S0065-2571(00)00013-3

Jain, 1987, Transport of molecules in the tumor interstitium: a review, Cancer Res., 47, 3039

Li, 1995, Heat-shock proteins, thermotolerance, and their relevance to clinical hyperthermia, Int. J. Hyperthermia, 11, 459, 10.3109/02656739509022483

Borrelli, 1986, A direct correlation between hyperthermia-induced membrane blebbing and survival in synchronous G1 Cho cells, J. Cell. Physiol., 126, 181, 10.1002/jcp.1041260206

Coleman, 2001, Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I, Nat. Cell Biol., 3, 339, 10.1038/35070009

Sebbagh, 2001, Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing, Nat. Cell Biol., 3, 346, 10.1038/35070019

Mills, 1998, Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation, J. Cell Biol., 140, 627, 10.1083/jcb.140.3.627

Kowal-Vern, 2000, Antithrombin III concentrate in the acute phase of thermal injury, Burns, 26, 97, 10.1016/S0305-4179(99)00099-6