Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ferrari, 2005, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 161, 10.1038/nrc1566
Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994
Katz, 2004, Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications, Angew. Chem. Int. Edit., 43, 6042, 10.1002/anie.200400651
Moghimi, 2001, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev., 53, 283
Niemeyer, 2001, Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Edit., 40, 4128, 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
Huang, 2007, Gold nanoparticles and nanorods in medicine: from cancer diagnostics to photothermal therapy, Nanomedicine, 2, 681, 10.2217/17435889.2.5.681
Burda, 2005, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025, 10.1021/cr030063a
Liz-Marzan, 2006, Tailoring surface plasmons through the morphology and assembly of metal nanoparticles, Langmuir, 22, 32, 10.1021/la0513353
Noguez, 2007, Surface plasmons on metal nanoparticles: the influence of shape and physical environment, J. Phys. Chem. C, 111, 3806, 10.1021/jp066539m
Pileni, 2007, Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties, Acc. Chem. Res., 40, 685, 10.1021/ar6000582
Adams, 2003, Charge transfer on the nanoscale: current status, J. Phys. Chem. B, 107, 6668, 10.1021/jp0268462
Thomas, 1996, Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets, Nature, 383, 145, 10.1038/383145a0
Daniel, 2004, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104, 293, 10.1021/cr030698+
Huh, 2005, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals, J. Am. Chem. Soc., 127, 12387, 10.1021/ja052337c
Durr, 2007, Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods, Nano Lett., 7, 941, 10.1021/nl062962v
Sokolov, 2003, Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles, Cancer Res., 63, 1999
Wang, 2005, In vitro and in vivo two-photon luminescence imaging of single gold nanorods, Proc. Natl. Acad. Sci. USA, 102, 15752, 10.1073/pnas.0504892102
El-Sayed, 2005, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer, Nano Lett., 5, 829, 10.1021/nl050074e
Loo, 2005, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett., 5, 709, 10.1021/nl050127s
Johannsen, 2005, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique, Int. J. Hyperthermia, 21, 637, 10.1080/02656730500158360
Kam, 2005, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. USA, 102, 11600, 10.1073/pnas.0502680102
Chen, 2007, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett., 7, 1318, 10.1021/nl070345g
El-Sayed, 2006, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett., 239, 129, 10.1016/j.canlet.2005.07.035
Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 100, 13549, 10.1073/pnas.2232479100
Huang, 2006, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115, 10.1021/ja057254a
Pitsillides, 2003, Selective cell targeting with light-absorbing microparticles and nanoparticles, Biophys. J., 84, 4023, 10.1016/S0006-3495(03)75128-5
Tong, 2007, Gold nanorods mediate tumor cell death by compromising membrane integrity, Adv. Mater., 19, 3136, 10.1002/adma.200701974
Zharov, 2003, Photothermal detection of local thermal effects during selective nanophotothermolysis, Appl. Phys. Lett., 83, 4897, 10.1063/1.1632546
Connor, 2005, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 1, 325, 10.1002/smll.200400093
Khan, 2007, Molecular effects of uptake of gold nanoparticles in HeLa cells, Chembiochem, 8, 1237, 10.1002/cbic.200700165
Shukla, 2005, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview, Langmuir, 21, 10644, 10.1021/la0513712
El-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n
Link, 2000, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem., 19, 409, 10.1080/01442350050034180
Mie, 1908, Contribution to the optics of turbid media, especially colloidal metal suspensions, Ann. Phys., 25, 377, 10.1002/andp.19083300302
Huang, 2007, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp and polarized surface Raman spectra: a potential cancer diagnostic marker, Nano Lett., 7, 1591, 10.1021/nl070472c
Stuart, 2006, In vivo glucose measurement by surface-enhanced Raman spectroscopy, Anal. Chem., 78, 7211, 10.1021/ac061238u
Amin, 1993, Hepatic metastases – interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment, Radiology, 187, 339, 10.1148/radiology.187.2.8475270
Eichler, 2001, Oligonodular hepatocellular carcinoma (HCC): MR-guided laser-induced thermotherapy (LITT), Radiology, 41, 915, 10.1007/s001170170063
Nolsoe, 1993, Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-Yag laser with a diffuser tip – a pilot clinical-study, Radiology, 187, 333, 10.1148/radiology.187.2.8475269
Hildebrandt, 2002, The cellular and molecular basis of hyperthermia, Crit. Rev. Oncol. Hematol., 43, 33, 10.1016/S1040-8428(01)00179-2
Horsman, 2007, Hyperthermia: a potent enhancer of radiotherapy, Clin. Oncol., 19, 418, 10.1016/j.clon.2007.03.015
Wust, 2002, Hyperthermia in combined treatment of cancer, Lancet Oncol., 3, 487, 10.1016/S1470-2045(02)00818-5
Dewey, 1994, Arrhenius relationships from the molecule and cell to the clinic, Int. J. Hyperthermia, 10, 457, 10.3109/02656739409009351
O’neal, 2004, Photothermal tumor ablation in mice using near infrared absorbing nanoshells, Cancer Lett., 209, 171, 10.1016/j.canlet.2004.02.004
Sultan, 1990, Tumour ablation by laser in general surgery, Lasers Med. Sci., 5, 185, 10.1007/BF02031380
Rau, 2000, Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters, Int. J. Radiat. Oncol. Biol. Phys., 48, 381, 10.1016/S0360-3016(00)00650-7
Song, 1996, Tumour oxygenation is increased by hyperthermia at mild temperatures, Int. J. Hyperthermia, 12, 367, 10.3109/02656739609022525
Issels, 2001, Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study, Eur. J. Cancer, 37, 1599, 10.1016/S0959-8049(01)00183-6
Overgaard, 1995, Randomized trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant-melanoma, Lancet, 345, 540, 10.1016/S0140-6736(95)90463-8
Rau, 1998, Preoperative hyperthermia combined with radiochemotherapy in locally advanced rectal cancer – a phase II clinical trial, Ann. Surg., 227, 380, 10.1097/00000658-199803000-00010
Van Der Zee, 2000, Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial, Lancet, 355, 1119, 10.1016/S0140-6736(00)02059-6
Vernon, 1996, Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials, Int. J. Radiat. Oncol. Biol. Phys., 35, 731, 10.1016/0360-3016(96)00154-X
Mckenziei, 1984, Lasers in surgery and medicine, Phys. Med. Biol., 29, 619, 10.1088/0031-9155/29/6/001
Svaasand, 1990, On the physical rationale of laser induced hyperthermia, Lasers Med. Sci., 5, 121, 10.1007/BF02031373
Chen, 1995, Chromophore-enhanced in-vivo tumor-cell destruction using an 808-Nm diode-laser, Cancer Lett., 94, 125, 10.1016/0304-3835(95)03837-M
Chen, 1997, Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment, Cancer Lett., 115, 25, 10.1016/S0304-3835(97)04707-1
Chen, 1996, Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study, Cancer Lett., 98, 169, 10.1016/S0304-3835(06)80028-5
Henderson, 1992, How does photodynamic therapy work?, J. Photochem. Photobiol., 55, 145, 10.1111/j.1751-1097.1992.tb04222.x
Elisseeff, 1999, Transdermal photopolymerization for minimally invasive implantation, Proc. Natl. Acad. Sci. USA, 96, 3104, 10.1073/pnas.96.6.3104
Murphy, 2005, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846
Nikoobakht, 2003, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mat., 15, 1957, 10.1021/cm020732l
Wiley, 2007, Synthesis of silver nanostructures with controlled shapes and properties, Acc. Chem. Res., 40, 1067, 10.1021/ar7000974
Huang, 2007, Plasmonic photothermal therapy using gold nanoparticles, Lasers Med. Sci. ASAP
Huang, 2007, The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy, Lasers Surg. Med., 39, 747, 10.1002/lsm.20577
Huff, 2007, Hyperthermic effects of gold nanorods on tumor cells, Nanomedicine, 2, 125, 10.2217/17435889.2.1.125
Hu, 2006, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084, 10.1039/b517615h
Gans, 1915, Form of ultramicroscopic particles of silver, Ann. Phys., 47, 270, 10.1002/andp.19153521006
Gole, 2004, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed, Chem. Mat., 16, 3633, 10.1021/cm0492336
Perez-Juste, 2005, Gold nanorods: synthesis, characterization and applications, Coord. Chem. Rev., 249, 1870, 10.1016/j.ccr.2005.01.030
Harris, 2003, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug Discov., 2, 214, 10.1038/nrd1033
Niidome, 2006, PEG-modified gold nanorods with a stealth character for in vivo applications, J. Control. Release, 114, 343, 10.1016/j.jconrel.2006.06.017
Maeda, 2001, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Adv. Enzyme Regul., 41, 189, 10.1016/S0065-2571(00)00013-3
Jain, 1987, Transport of molecules in the tumor interstitium: a review, Cancer Res., 47, 3039
Li, 1995, Heat-shock proteins, thermotolerance, and their relevance to clinical hyperthermia, Int. J. Hyperthermia, 11, 459, 10.3109/02656739509022483
Borrelli, 1986, A direct correlation between hyperthermia-induced membrane blebbing and survival in synchronous G1 Cho cells, J. Cell. Physiol., 126, 181, 10.1002/jcp.1041260206
Coleman, 2001, Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I, Nat. Cell Biol., 3, 339, 10.1038/35070009
Sebbagh, 2001, Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing, Nat. Cell Biol., 3, 346, 10.1038/35070019
Mills, 1998, Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation, J. Cell Biol., 140, 627, 10.1083/jcb.140.3.627