Goal-oriented a-posteriori estimation of model error as an aid to parameter estimation

Journal of Computational Physics - Tập 470 - Trang 111575 - 2022
Prashant K. Jha1, J. Tinsley Oden1
1Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, United States of America

Tài liệu tham khảo

Allen, 1979, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085, 10.1016/0001-6160(79)90196-2 Alnæs, 2015, The fenics project version 1.5, Arch. Numer. Softw., 3 Alsayed, 2022, Optimal control of an Allen-Cahn model for tumor growth through supply of cytotoxic drugs, Discrete Contin. Dyn. Syst., Ser. S, 10.3934/dcdss.2022003 Bangerth, 2013 Becker, 2001, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10, 1, 10.1017/S0962492901000010 Biros, 2011 Conrad, 2016, Accelerating asymptotically exact MCMC for computationally intensive models via local approximations, J. Am. Stat. Assoc., 111, 1591, 10.1080/01621459.2015.1096787 Frangos, 2010, 123 Fritz, 2021, Modeling and simulation of vascular tumors embedded in evolving capillary networks, Comput. Methods Appl. Mech. Eng., 384, 10.1016/j.cma.2021.113975 Fritz, 2021, Analysis of a new multispecies tumor growth model coupling 3D phase-fields with a 1D vascular network, Nonlinear Anal., Real World Appl., 61, 10.1016/j.nonrwa.2021.103331 Galbally, 2010, Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. Numer. Methods Eng., 81, 1581, 10.1002/nme.2746 Hawkins-Daarud, 2012, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng., 28, 3, 10.1002/cnm.1467 Lassila, 2013, A reduced computational and geometrical framework for inverse problems in hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 741, 10.1002/cnm.2559 Li, 2018, Model adaptivity for goal-oriented inference using adjoints, Comput. Methods Appl. Mech. Eng., 331, 1, 10.1016/j.cma.2017.11.018 Lima, 2017, Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data, Comput. Methods Appl. Mech. Eng., 327, 277, 10.1016/j.cma.2017.08.009 Lima, 2016, Selection, calibration, and validation of models of tumor growth, Math. Models Methods Appl. Sci., 26, 2341, 10.1142/S021820251650055X Logg, 2012 Lorenzo, 2016, Tissue-scale, personalized modeling and simulation of prostate cancer growth, Proc. Natl. Acad. Sci., 113, E7663, 10.1073/pnas.1615791113 Manzoni, 2016, Accurate solution of Bayesian inverse uncertainty quantification problems combining reduced basis methods and reduction error models, SIAM/ASA J. Uncertain. Quantificat., 4, 380, 10.1137/140995817 Marzouk, 2009, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 228, 1862, 10.1016/j.jcp.2008.11.024 Oden, 2017 Oden, 2018, Adaptive multiscale predictive modelling, Acta Numer., 27, 353, 10.1017/S096249291800003X Oden, 2017, Predictive computational science: computer predictions in the presence of uncertainty, 1 Oden, 2010, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20, 477, 10.1142/S0218202510004313 Oden, 2001, Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl., 41, 735, 10.1016/S0898-1221(00)00317-5 Oden, 2002, Estimation of modeling error in computational mechanics, J. Comput. Phys., 182, 496, 10.1006/jcph.2002.7183 Prudhomme, 1999, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Eng., 176, 313, 10.1016/S0045-7825(98)00343-0 Prudhomme, 2003, 207 Rannacher, 1997, A feed-back approach to error control in finite element methods: application to linear elasticity, Comput. Mech., 19, 434, 10.1007/s004660050191 Roderick, 2014, Proper orthogonal decompositions in multifidelity uncertainty quantification of complex simulation models, Int. J. Comput. Math., 91, 748, 10.1080/00207160.2013.844431 van der Zee, 2011, Goal-oriented error estimation for Cahn–Hilliard models of binary phase transition, Numer. Methods Partial Differ. Equ., 27, 160, 10.1002/num.20638 Villa, 2018, hiPPYlib: an extensible software framework for large-scale inverse problems, J. Open Sour. Softw., 3, 940, 10.21105/joss.00940 Villa, 2021, hiPPYlib: an extensible software framework for large-scale inverse problems governed by PDEs: part I: deterministic inversion and linearized Bayesian inference, ACM Trans. Math. Softw., 47, 1, 10.1145/3428447 Yan, 2019, Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems, J. Comput. Phys., 381, 110, 10.1016/j.jcp.2018.12.025 Yan, 2020, An adaptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems, Commun. Comput. Phys., 28, 2180, 10.4208/cicp.OA-2020-0186