Glyphosate uses, adverse effects and alternatives: focus on the current scenario in Brazil

Environmental Geochemistry and Health - Tập 45 - Trang 9559-9582 - 2023
Leandro Goulart de Araujo1, Daniel Froes Zordan2, Alain Celzard1,3, Vanessa Fierro1
1Institut Jean Lamour, Université de Lorraine, Epinal, France
2MBA USP ESALQ, Universidade de São Paulo, São Paulo, Brazil
3Institut Universitaire de France (IUF), Paris, France

Tóm tắt

Brazil, a global frontrunner in pesticide consumption and sales, particularly glyphosate, appears to be at odds with other countries that increasingly ban these products in their territories. This study gathers the values of Acceptable Daily Intake and Maximum Residue Limits (MRL) in the European Union for dozens of substances and subsequently contrasts them with the corresponding benchmarks upheld in Brazil concerning its predominant crops. Furthermore, this study delves into the toxicity levels and the potential health ramifications of glyphosate on humans through the ingestion of food containing its residues. The findings from this research underscore a notable surge in glyphosate and pesticide sales and usage within Brazil over the past decade. In stark contrast to its European counterparts, Brazil not only sanctioned the sale and application of 474 new pesticides in 2019, but extended the authorization for glyphosate sales while downgrading its toxicity classification. Finally, this review not only uncovers disparities among research outcomes but also addresses the complexities of replacing glyphosate and introduces environmentally friendlier alternatives that have been subject to evaluation in the existing literature.

Tài liệu tham khảo

ABRASCO. (2019). Understand what is glyphosate, the best-selling pesticide in the world. Associação Brasileira de Saúde Coletiva. https://www.abrasco.org.br/site/noticias/movimentos-sociais/entenda-o-que-e-o-glifosato-o-agrotoxico-mais-vendido-do-mundo/40996/#:~:text=O que é o glifosato%3F,que hoje pertence à Bayer. [In Portuguese] Agostini, L. P., Dettogni, R. S., Dos Reis, R. S., Stur, E., Dos Santos, E. V. W., Ventorim, D. P., et al. (2020). Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Science of the Total Environment, 705, 135808. Ahmed, N., Alam, M., Saeed, M., Ullah, H., Iqbal, T., Al-Mutairi, K. A., et al. (2021). Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. In Global Decline of Insects. IntechOpen. Amarante De Junior, O. P., Dos Santos, T. C. R., Brito, N. M., & Ribeiro, M. L. (2002). Glyphosate: Properties, toxicity, uses and legislation. Quimica Nova, 25(4), 589–593 [In Portuguese]. https://doi.org/10.1590/s0100-40422002000400014 Anakwue, R. (2019). Cardiotoxicity of pesticides: Are africans at risk? Cardiovascular Toxicology, 19(2), 95–104. https://doi.org/10.1007/s12012-018-9486-7 Antonopoulos, N., Kanatas, P., Gazoulis, I., Tataridas, A., Ntovakos, D., Ntaoulis, V., et al. (2023). Hot foam: Evaluation of a new, non-chemical weed control option in perennial crops. Smart Agricultural Technology, 3, 100063. https://doi.org/10.1016/j.atech.2022.100063 ANVISA. (2011). Program for the Analysis of Pesticide Residues in Food (PARA): 2010 Activity Report. Brasília. https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos [In Portuguese] ANVISA. (2018). Analysis of Glyphosate+AMPA contamination data in water for human consumption recorded in the Water Quality Surveillance Information System for Human Consumption from 2014 to 2016. https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/arquivos/3770json-file-1 [In Portuguese] ANVISA. (2019a). Approved public consultation on glyphosate. ANVISA. https://www.gov.br/anvisa/pt-br/search?SearchableText=613/2019 glifosato [In Portuguese] ANVISA. (2019b). RDC No 296, DE 29 DE JULHO DE 2019. DIÁRIO OFICIAL DA UNIÃO, (146), 86. http://antigo.anvisa.gov.br/documents/10181/2858730/%281%29RDC_296_2019_.pdf/56ec68f8-7a79-4949-965b-9d1925599b77 ANVISA. (2019c). Guide for the preparation of labels and package inserts for pesticides, the like and wood preservatives: Vol. GUIDE No 12. (Vol. GUIA No 12). http://www.aenda.org.br/wp-content/uploads/2020/07/Guia-n-12-2018-Versão-1-Guia-para-Elaboração-de-Rótulo-e-Bula-de-Agrotóxicos-Afins-e-Preservativos-de-Madeira.pdf [In Portuguese] ANVISA. (2019d). Report of samples analyzed in the period 2017–2018. PARA - Programa de Análise de Resíduos de Agrotóxicos em Alimentos. Brasília. https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/arquivos/3770json-file-1 [In Portuguese] ANVISA. (2019e). Technical Note No. 23/2018/Sei/Creav/Gemar/Ggtox/Dire3/Anvisa. ANVISA. http://antigo.anvisa.gov.br/documents/10181/5344168/%281%29Nota+técnica+final+de+reavaliação+do+Glifosato.pdf/00558a91-3cc5-49bb-8c49-761c387d0681 [In Portuguese] ANVISA. (2019f). Vote No. 016/2019/2019/sei/dire2/anvisa (Vol. 2019). https://www.gov.br/anvisa/pt-br/composicao/diretoria-colegiada/reunioes-da-diretoria/votos/2019/6a-rop-de-2019/voto-16-2019-sei_25351-056754_2013_17.pdf [In Portuguese] ANVISA. (2020). G01 – Glyphosate. https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas/g-h-i/4378json-file-1 Bai, S. H., & Ogbourne, S. M. (2016). Glyphosate: Environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research, 23(19), 18988–19001. https://doi.org/10.1007/s11356-016-7425-3 Benachour, N., Sipahutar, H., Moslemi, S., Gasnier, C., Travert, C., & Séralini, G. E. (2007). Time- and dose-dependent effects of roundup on human embryonic and placental cells. Archives of Environmental Contamination and Toxicology, 53(1), 126–133. https://doi.org/10.1007/s00244-006-0154-8 Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 3. https://doi.org/10.1186/s12302-016-0070-0 Benbrook, C. M. (2018). Why regulators lost track and control of pesticide risks: Lessons from the case of glyphosate-based herbicides and genetically engineered-crop technology. Current Environmental Health Reports, 5(3), 387–395. https://doi.org/10.1007/s40572-018-0207-y Bioeconomy BW. (2019). Simple sugar could soon compete with glyphosate. Bioeconomy BW. https://www.biooekonomie-bw.de/en/articles/news/simple-sugar-could-soon-compete-with-glyphosate Bou-Mitri, C., Mekanna, A. N., Dagher, S., Moukarzel, S., & Farhat, A. (2022). Occurrence and exposure to glyphosate present in bread and flour products in Lebanon. Food Control, 136, 108894. https://doi.org/10.1016/j.foodcont.2022.108894 BRASIL. (2016). Registration of pesticides. MAPA - Ministério da Agricultura, Pecuária e Abastecimento. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos [In Portuguese] Brilisauer, K., Rapp, J., Rath, P., Schöllhorn, A., Bleul, L., Weiß, E., et al. (2019). Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms. Nature Communications. https://doi.org/10.1038/s41467-019-08476-8 Brovini, E. M., Cardoso, S. J., Quadra, G. R., Vilas-Boas, J. A., Paranaíba, J. R., de Pereira, R., & O., & Mendonça, R. F. (2021). Glyphosate concentrations in global freshwaters: Are aquatic organisms at risk? Environmental Science and Pollution Research, 28(43), 60635–60648. https://doi.org/10.1007/s11356-021-14609-8 Buckley, N. A., Fahim, M., Raubenheimer, J., Gawarammana, I. B., Eddleston, M., Roberts, M. S., & Dawson, A. H. (2021). Case fatality of agricultural pesticides after self-poisoning in Sri Lanka: A prospective cohort study. The Lancet Global Health, 9(6), e854–e862. https://doi.org/10.1016/S2214-109X(21)00086-3 Caratelli, V., Fegatelli, G., Moscone, D., & Arduini, F. (2022). A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture. Biosensors and Bioelectronics, 205, 114119. Castro, I. R. R. de. (2019). The extinction of the National Food and Nutrition Security Council and the food and nutrition agenda. Cadernos de Saúde Pública, 35(2), [In Portuguese]. https://doi.org/10.1590/0102-311x00009919 Cavalier, H., Trasande, L., & Porta, M. (2023). Exposures to pesticides and risk of cancer: Evaluation of recent epidemiological evidence in humans and paths forward. International Journal of Cancer, 152(5), 879–912. https://doi.org/10.1002/ijc.34300 Cederlund, H., & Börjesson, E. (2016). Hot foam for weed control—Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil? Journal of Hazardous Materials, 314, 312–317. https://doi.org/10.1016/j.jhazmat.2016.04.061 Chefirat, B., Zergui, A., Benzerga, S., & Rezk-Kallah, H. (2021). The role of oximes in the management of acute poisoning with cholinesterase inhibitors pesticides: Case reports. Toxicologie Analytique Et Clinique, 33(1), 101–107. https://doi.org/10.1016/j.toxac.2020.09.077 Craig, I. P., Hewitt, A., & Terry, H. (2014). Rotary atomiser design requirements for optimum pesticide application efficiency. Crop Protection, 66, 34–39. https://doi.org/10.1016/j.cropro.2014.08.012 Crmaric, I., Keller, M., Krauss, J., & Delabays, N. (2018). Efficacy of natural fatty acid based herbicides on mixed weed stands. Jul. Kühn Arch, 458, 327–332. https://doi.org/10.5073/jka.2018.458.048 Curwin, B. D., Hein, M. J., Sanderson, W. T., Nishioka, M. G., Reynolds, S. J., Ward, E. M., & Alavanja, M. C. (2005). Pesticide Contamination Inside Farm and Nonfarm Homes. Journal of Occupational and Environmental Hygiene, 2(7), 357–367. https://doi.org/10.1080/15459620591001606 Curwin, B. D., Hein, M. J., Sanderson, W. T., Striley, C., Heederik, D., Kromhout, H., et al. (2007). Pesticide dose estimates for children of Iowa farmers and non-farmers. Environmental Research, 105(3), 307–315. https://doi.org/10.1016/j.envres.2007.06.001 Dayan, F. E. (2019). Current status and future prospects in herbicide discovery. Plants, 8(9), 341. https://doi.org/10.3390/plants8090341 Dayan, F. E., Owens, D. K., Corniani, N., Silva, F. M. L., Watson, S. B., Howell, J., & Shaner, D. L. (2015). Biochemical Markers and Enzyme Assays for Herbicide Mode of Action and Resistance Studies. Weed Science, 63(SP1), 23–63. https://doi.org/10.1614/WS-D-13-00063.1 de Nascimento, F., & A., Alves, AA., Nunes, HF., Miziara, F., Parise, MR., & de Melo e Silva, D. (2020). Cultivated areas and rural workers’ behavior are responsible for the increase in agricultural intoxications in Brazil? Are these factors associated? Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-09988-3 de Castro Lima, J. A. M., Labanowski, J., Bastos, M. C., Zanella, R., Prestes, O. D., de Vargas, J. P. R., et al. (2020). “Modern agriculture” transfers many pesticides to watercourses: A case study of a representative rural catchment of southern Brazil. Environmental Science and Pollution Research, 27(10), 10581–10598. https://doi.org/10.1007/s11356-019-06550-8 de Gomes, O. H., Menezes, J. M. C., da Costa, J. G. M., Coutinho, H. D. M., Teixeira, R. N. P., & do Nascimento, R. F. (2020). A socio-environmental perspective on pesticide use and food production. Ecotoxicology and Environmental Safety, 197, 110627. https://doi.org/10.1016/j.ecoenv.2020.110627 Demeneix, B., Leemans, M., & Couderq, S. (2020). Pyrethroid exposure: Not so harmless after all. The Lancet Diabetes & Endocrinology, 8(4), 266–268. https://doi.org/10.1016/S2213-8587(20)30039-5 DIÁRIO OFICIAL DA UNIÃO. (2019). ACT No. 58, OF AUGUST 27, 2019. https://www.in.gov.br/web/dou/-/ato-n-58-de-27-de-agosto-de-2019-213474289 [In Portuguese] DIÁRIO OFICIAL DA UNIÃO. (2020). RESOLUTION - RDC No. 441, OF DECEMBER 2, 2020. https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-441-de-2-de-dezembro-de-2020-293190758 [In Portuguese] Disner, G. R., Falcão, M. A. P., Andrade-Barros, A. I., Leite dos Santos, N. V., Soares, A. B. S., Marcolino-Souza, M., et al. (2021). The toxic effects of glyphosate, chlorpyrifos, abamectin, and 2,4-D on animal models: A systematic review of Brazilian studies. Integrated Environmental Assessment and Management, 17(3), 507–520. https://doi.org/10.1002/ieam.4353 Dorta, D. J., Yonamine, M., Costa, J. L. da, & Martinis, B. S. de. (2018). Forensic toxicology (Blucher.). São Paulo: [In Portuguese]. Eddleston, M. (2020). Poisoning by Pesticides. Medicine, 48(3), 214–217. https://doi.org/10.1016/j.mpmed.2019.12.019 EFSA. (2017). Peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate. European Food Safety Authority. https://doi.org/10.2903/j.efsa.2017.4979 Environmental Protection Agency. (2000). Pelargonic acid (217500) fact sheet. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-217500_01-Apr-00.pdf Environmental Protection Agency. (2020). Interim Registration Review Decision and Responses to Public Comments for Glyphosate. https://www.epa.gov/ingredients-used-pesticide-products/interim-registration-review-decision-and-responses-public European Food State Authority. (2022). Glyphosate. https://www.efsa.europa.eu/en/topics/topic/glyphosate. Accessed 9 August 2022 FAO/WHO. (2005). Pesticide residues in food 2005. FAO Plant, Production and Protection Paper. https://www.fao.org/3/a0439e/a0439e.pdf FAO/WHO. (2016). Pesticide residues in food 2016—Special session of the joint FAO/WHO meeting on pesticide residues. (Food and Agriculture Organization of the United Nations/World Health, Ed.). https://www.fao.org/3/i5693e/I5693E.pdf Feng, D., Soric, A., & Boutin, O. (2020). Treatment technologies and degradation pathways of glyphosate: A critical review. Science of the Total Environment, 742, 140559. https://doi.org/10.1016/j.scitotenv.2020.140559 Fernandes, G., Aparicio, V. C., Bastos, M. C., De Gerónimo, E., Labanowski, J., Prestes, O. D., et al. (2019). Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Science of the Total Environment, 651, 1377–1387. https://doi.org/10.1016/j.scitotenv.2018.09.292 FiBL, I. (2022). The World of Organic Agriculture STATISTICS & EMERGING TRENDS 2022. https://www.fibl.org/en/info-centre/news/the-world-of-organic-agriculture-statistics-and-emerging-trends-2022-online Finger, R., Swinton, S. M., El Benni, N., & Walter, A. (2019). Precision farming at the nexus of agricultural production and the environment. Annual Review of Resource Economics, 11, 313–335. https://doi.org/10.1146/annurev-resource-100518-093929 Fogliatto, S., Ferrero, A., & Vidotto, F. (2020). Current and future scenarios of glyphosate use in Europe: Are there alternatives? In Advances in agronomy (Vol. 163, pp. 219–278). Elsevier. https://doi.org/10.1016/bs.agron.2020.05.005 Food & Drug. U.S. (2009). TITLE 21--Food and drugs Chapter I--Food and drug administration. United States of America. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=173.315 Gasnier, C., Benachour, N., Clair, E., Travert, C., Langlois, F., Laurant, C., et al. (2010). Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines. Journal of Occupational Medicine and Toxicology, 5(1), 1–13. https://doi.org/10.1186/1745-6673-5-29 Gélinas, P., Gagnon, F., & McKinnon, C. (2018). Wheat preharvest herbicide application, whole-grain flour properties, yeast activity and the degradation of glyphosate in bread. International Journal of Food Science and Technology, 53(7), 1597–1602. https://doi.org/10.1111/ijfs.13741 Geng, Y., Jiang, L., Zhang, D., Liu, B., Zhang, J., Cheng, H., et al. (2021). Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Science of the Total Environment, 769, 144396. https://doi.org/10.1016/j.scitotenv.2020.144396 Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup® herbicide. In Reviews of environmental contamination and toxicology (pp. 35–120). Springer. https://doi.org/10.1007/978-1-4612-1156-3_2 Gillezeau, C., van Gerwen, M., Shaffer, R. M., Rana, I., Zhang, L., Sheppard, L., & Taioli, E. (2019). The evidence of human exposure to glyphosate: A review. Environmental Health, 18(1), 2. https://doi.org/10.1186/s12940-018-0435-5 Gomiero, T. (2018). Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Applied Soil Ecology, 123, 714–728. https://doi.org/10.1016/j.apsoil.2017.10.014 González-Valenzuela, L. E., & Dussán, J. (2018). Molecular assessment of glyphosate-degradation pathway via sarcosine intermediate in Lysinibacillus sphaericus. Environmental Science and Pollution Research, 25(23), 22790–22796. https://doi.org/10.1007/s11356-018-2364-9 Gunnell, D., Knipe, D., Chang, S.-S., Pearson, M., Konradsen, F., Lee, W. J., & Eddleston, M. (2017). Prevention of suicide with regulations aimed at restricting access to highly hazardous pesticides: A systematic review of the international evidence. The Lancet Global Health, 5(10), e1026–e1037. https://doi.org/10.1016/S2214-109X(17)30299-1 Guo, Y., & Li, Z. (2021). A lognormal model for evaluating maximum residue levels of pesticides in crops. Environmental Pollution, 278, 116832. https://doi.org/10.1016/j.envpol.2021.116832 Gupta, R. C., & Crissman, J. W. (2013). Agricultural chemicals. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology (pp. 1349–1372). Elsevier. Handford, C. E., Elliott, C. T., & Campbell, K. (2012). Herbicides - Properties, Synthesis and Control of Weeds. (M. N. Hasaneen, Ed.)Integrated Environmental Assessment and Management (Vol. 11). InTech. https://doi.org/10.5772/2511 Headrick, D. (2021). The future of organic insect pest management: Be a better entomologist or pay for someone who is. InSects, 12(2), 140. https://doi.org/10.3390/insects12020140 Hendges, C., da Schiller, A., & P., Manfrin, J., Macedo, E. K., Gonçalves, A. C., & Stangarlin, J. R. (2019). Human intoxication by agrochemicals in the region of South Brazil between 1999 and 2014. Journal of Environmental Science and Health, Part B, 54(4), 219–225. https://doi.org/10.1080/03601234.2018.1550300 Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., et al. (2022). _forecast: Forecasting functions for time series and linear models_. https://pkg.robjhyndman.com/forecast/ IARC. (2015). IARC Monograph on Glyphosate. IARC/WHO. Lyon. https://www.iarc.who.int/wp-content/uploads/2018/07/MonographVolume112-1.pdf IBAMA. (2022). Pesticides marketing reports. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos [In Portuguese] IHU. (2019). The toxicological reclassification of pesticides and the health impacts of glyphosate. Special interview with Luiz Cláudio Meirelles. IHU - Instituto Humanitas Unisinos. https://www.ihu.unisinos.br/categorias/159-entrevistas/594731-a-reclassificacao-toxicologica-dos-agrotoxicos-e-os-impactos-do-glifosato-na-saude-entrevista-com-luiz-claudio-meirelles [In Portuguese] Inamasu, R. Y., & Bernardi, A. C. de C. (2013). Precision agriculture. EMBRAPA. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/114258/1/cap-1.pdf [In Portuguese] International Agency for Research on Cancer. (2013). Preamble to the IARC monographs - scientific review and evaluation. https://monographs.iarc.who.int/cards_page/preamble-monographs/ International Agency for Research on Cancer. (2021). Agents classified by the IARC monographs, volumes 1–129. http://monographs.iarc.fr/ENG/Classification/index.php Jacquet, F., Delame, N., Vita, J. L., Huyghe, C., & Reboud, X. (2021). The micro-economic impacts of a ban on glyphosate and its replacement with mechanical weeding in French vineyards. Crop Protection, 150, 105778. https://doi.org/10.1016/j.cropro.2021.105778 Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3–4), 90–100. https://doi.org/10.1515/intox-2016-0012 Jouzi, Z., Azadi, H., Taheri, F., Zarafshani, K., Gebrehiwot, K., Van Passel, S., & Lebailly, P. (2017). Organic farming and small-scale farmers: Main opportunities and challenges. Ecological Economics, 132, 144–154. https://doi.org/10.1016/j.ecolecon.2016.10.016 Kanatas, P., Antonopoulos, N., Gazoulis, I., & Travlos, I. S. (2021). Screening glyphosate-alternative weed control options in important perennial crops. Weed Science, 69(6), 704–718. https://doi.org/10.1017/wsc.2021.55 Kenko, D. B. N., Ngameni, N. T., & Egbe, A. M. (2022). Evaluation of the implications of pesticide usage in agriculture on earthworms in the mono-modal equatorial agro-ecological zone of Cameroon. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02814-5 Kenko, D. B. N., Ngameni, N. T., Awo, M. E., Njikam, N. A., & Dzemo, W. D. (2023). Does pesticide use in agriculture present a risk to the terrestrial biota? Science of the Total Environment, 861, 160715. https://doi.org/10.1016/j.scitotenv.2022.160715 Kudsk, P., & Mathiassen, S. K. (2020). Pesticide regulation in the European Union and the glyphosate controversy. Weed Science, 68(3), 214–222. https://doi.org/10.1017/wsc.2019.59 Laitinen, P., Siimes, K., Eronen, L., Rämö, S., Welling, L., Oinonen, S., et al. (2006). Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Management Science, 62(6), 473–491. https://doi.org/10.1002/ps.1186 Landrigan, P. J., & Belpoggi, F. (2018). The need for independent research on the health effects of glyphosate-based herbicides. Environmental Health, 17(1), 51. https://doi.org/10.1186/s12940-018-0392-z Lemma, T., Ruiz, G. C. M., Oliveira, O. N., Jr., & Constantino, C. J. L. (2019). The pesticide picloram affects biomembrane models made with Langmuir monolayers. Colloids and Surfaces b: Biointerfaces, 181, 953–958. Leon, M. E., Schinasi, L. H., Lebailly, P., Beane Freeman, L. E., Nordby, K.-C., Ferro, G., et al. (2019). Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: A pooled analysis from the AGRICOH consortium. International Journal of Epidemiology, 48(5), 1519–1535. https://doi.org/10.1093/ije/dyz017 Londres, F. (2011). AGROTOXICS IN BRAZIL: a guide to action in defense of life (1st ed.). Rio de Janeiro: AS-PTA–Assessoria e Serviços a Projetos em Agricultura Alternativa [In Portuguese]. Lozowicka, B., Iwaniuk, P., Konecki, R., Kaczynski, P., Kuldybayev, N., & Dutbayev, Y. (2022). Impact of diversified chemical and biostimulator protection on yield, health status, mycotoxin level, and economic profitability in spring wheat (Triticum aestivum L.) cultivation. Agronomy, 12(2), 258. https://doi.org/10.3390/agronomy12020258 Mackay, D., Shiu, W.-Y., & Lee, S. C. (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC Press. Mainardis, M., Boscutti, F., del Rubio Cebolla, M., & M., & Pergher, G. (2020). Comparison between flaming, mowing and tillage weed control in the vineyard: Effects on plant community, diversity and abundance. PLoS ONE, 15(8), e0238396. Martelloni, L., Frasconi, C., Sportelli, M., Fontanelli, M., Raffaelli, M., & Peruzzi, A. (2019). The use of different hot foam doses for weed control. Agronomy, 9(9), 490. https://doi.org/10.3390/agronomy9090490 Martelloni, L., Frasconi, C., Sportelli, M., Fontanelli, M., Raffaelli, M., & Peruzzi, A. (2020). Flaming, glyphosate, hot foam and nonanoic acid for weed control: A comparison. Agronomy, 10(1), 129. https://doi.org/10.3390/agronomy10010129 Martinez, D. A., Loening, U. E., & Graham, M. C. (2018). Impacts of glyphosate-based herbicides on disease resistance and health of crops: A review. Environmental Sciences Europe, 30(1), 2. https://doi.org/10.1186/s12302-018-0131-7 Martinez, D. A., Loening, U. E., Graham, M. C., & Gathorne-Hardy, A. (2021). When the medicine feeds the problem; Do nitrogen fertilisers and pesticides enhance the nutritional quality of crops for their pests and pathogens? Frontiers in Sustainable Food Systems, 5, 234. https://doi.org/10.3389/fsufs.2021.701310 Medina, G. da S. (2022). The economics of agribusiness in developing countries: Areas of opportunities for a new development paradigm in the soybean supply chain in Brazil. Frontiers in Sustainable Food Systems, 6(February). https://doi.org/10.3389/fsufs.2022.842338 Mesnage, R., Bernay, B., & Séralini, G.-E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313(2–3), 122–128. https://doi.org/10.1016/j.tox.2012.09.006 Mielech, A., Puścion-Jakubik, A., & Socha, K. (2021). Assessment of the risk of contamination of food for infants and toddlers. Nutrients, 13(7), 2358. https://doi.org/10.3390/nu13072358 MAPA - Ministério da Agricultura, P. e A. (2022). National register of organic producers. https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/organicos/cadastro-nacional-produtores-organicos [In Portuguese] Mohamed, Y. A., Meabed, M. H., Abougaba, K. M., Sayed, F. A., Welson, N. N., & Ibrahim, R. E. (2022). A comparative study: Rural versus urban children as regard exposure to organophosphorus pesticides using cholinesterase enzyme activity. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 6. https://doi.org/10.1186/s43088-021-00190-z Mondelaers, K., Aertsens, J., & Van Huylenbroeck, G. (2009). A meta-analysis of the differences in environmental impacts between organic and conventional farming. British Food Journal, 111(10), 1098–1119. https://doi.org/10.1108/00070700910992925 Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming—Brief review. Animals, 11(8), 2345. https://doi.org/10.3390/ani11082345 Myers, J. P., Antoniou, M. N., Blumberg, B., Carroll, L., Colborn, T., Everett, L. G., et al. (2016). Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environmental Health, 15(1), 19. https://doi.org/10.1186/s12940-016-0117-0 Nagaraj, S. (2021). Role of consumer health consciousness, food safety & attitude on organic food purchase in emerging market: A serial mediation model. Journal of Retailing and Consumer Services, 59, 102423. https://doi.org/10.1016/j.jretconser.2020.102423 Naika, S., Jeude, J. van L. de, Goffau, M. de, Hilmi, M., & Dam, B. van. (2006). Agrodok 17: The tomato crop. (B. van Dam, Ed.). Wageningen: Digigrafi [In Portuguese]. Nankongnab, N., Kongtip, P., Tipayamongkholgul, M., Bunngamchairat, A., Sitthisak, S., & Woskie, S. (2020). Difference in accidents, health symptoms, and ergonomic problems between conventional farmers using pesticides and organic farmers. Journal of Agromedicine, 25(2), 158–165. https://doi.org/10.1080/1059924X.2019.1607793 National Library of Medicine. (2022). Nonanoic acid. https://pubchem.ncbi.nlm.nih.gov/compound/Nonanoic-acid Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. M. (2017). Delineation of soil management zones for variable-rate fertilization. In Advances in agronomy (Vol. 143, pp. 175–245). Elsevier. https://doi.org/10.1016/bs.agron.2017.01.003 Neethirajan, S., Ragavan, K. V., & Weng, X. (2018). Agro-defense: Biosensors for food from healthy crops and animals. Trends in Food Science and Technology, 73, 25–44. https://doi.org/10.1016/j.tifs.2017.12.005 Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148 Nunes, A., Schmitz, C., Moura, S., & Maraschin, M. (2021). The use of pesticides in Brazil and the risks linked to human health / O uso de pesticidas no Brasil e os riscos associados à saúde humana. Brazilian Journal of Development, 7(4), 37885–37904. Pandey, S. K., & Roy, K. (2021). QSPR modeling of octanol-water partition coefficient and organic carbon normalized sorption coefficient of diverse organic chemicals using Extended Topochemical Atom (ETA) indices. Ecotoxicology and Environmental Safety, 208, 111411. https://doi.org/10.1016/j.ecoenv.2020.111411 Paumgartten, F. J. R. (2020). Pesticides and public health in Brazil. Current Opinion in Toxicology, 22, 7–11. Peerzada, A. M., & Chauhan, B. S. (2018). Thermal weed control: history, mechanisms, and impacts. In Non-Chemical Weed Control (pp. 9–31). Elsevier. https://doi.org/10.1016/B978-0-12-809881-3.00002-4 Peixoto, A. M., de Toledo, F. F., & Sousa, J. S. I. (1995). Enciclopédia agrícola brasileira A-B. EdUSP (1st ed.). EdUSP. Pereira, R. C., da Costa, A. C. S., Ivashita, F. F., Paesano, A., & Zaia, D. A. M. (2020). Interaction between glyphosate and montmorillonite in the presence of artificial seawater. Heliyon, 6(3), e03532. https://doi.org/10.1016/j.heliyon.2020.e03532 Pergher, G., & Mainardis. (2019). Field testing of a biomass-fueled flamer for in-row weed control in the vineyard. Agriculture, 9(10), 210. https://doi.org/10.3390/agriculture9100210 PESTICIDE ACTION NETWORK UK. (2019). How pesticide mixtures may be harming human health and the environment. https://www.soilassociation.org/media/19535/the-pesticide-cocktail-effect.pdf Rajamannan, A. H. . (1995). Method of using hot air foam to kill vegetation and pests. https://patentimages.storage.googleapis.com/ce/ca/9c/b5997d7b051936/US5575111.pdf Recena, M. C. P., Pires, D. X., & Caldas, E. D. (2006). Acute poisoning with pesticides in the state of Mato Grosso do Sul. Brazil. Science of the Total Environment, 357(1–3), 88–95. https://doi.org/10.1016/j.scitotenv.2005.04.029 Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(15221). https://doi.org/10.1038/nplants.2015.221 Rowen, E. K., Pearsons, K. A., Smith, R. G., Wickings, K., & Tooker, J. F. (2022). Early-season plant cover supports more effective pest control than insecticide applications. Ecological Applications, 32(5), e2598. https://doi.org/10.1002/eap.2598 Sanyal, D., & Shrestha, A. (2008). Direct effect of herbicides on plant pathogens and disease development in various cropping systems. Weed Science, 56(1), 155–160. https://doi.org/10.1614/WS-07-081.1 Scalco, A. R., de Oliveira, S. C., Pigatto, G. S., & Cobre, J. (2017). Factors that may lead on the non-renewal of certified organic product according to organic producers in Brazil. Revista De Economia e Sociologia Rural, 55(3), 465–478. https://doi.org/10.1590/1234-56781806-94790550303 Sehsah, M. D., El-Kot, G. A., El-Nogoumy, B. A., Alorabi, M., El-Shehawi, A. M., Salama, N. H., & El-Tahan, A. M. (2022). Efficacy of Bacillus subtilis, Moringa oleifera seeds extract and potassium bicarbonate on Cercospora leaf spot on sugar beet. Saudi Journal of Biological Sciences, 29(4), 2219–2229. https://doi.org/10.1016/j.sjbs.2021.11.039 Shah, K. K., Modi, B., Pandey, H. P., Subedi, A., Aryal, G., Pandey, M., & Shrestha, J. (2021). Diversified crop rotation: An approach for sustainable agriculture production. Advances in Agriculture, 2021, 1–9. https://doi.org/10.1155/2021/8924087 Singh, A., & Glińska-Neweś, A. (2022). Modeling the public attitude towards organic foods: A big data and text mining approach. Journal of Big Data, 9(1), 2. https://doi.org/10.1186/s40537-021-00551-6 Sinha, S. N., Kumar, K. R., Ungarala, R., Kumar, D., Deshpande, A., Vasudev, K., et al. (2021). Toxicokinetic analysis of commonly used pesticides using data on acute poisoning cases from Hyderabad. South India. Chemosphere, 268, 129488. https://doi.org/10.1016/j.chemosphere.2020.129488 SINITOX. (2017a). Intoxication data. SINITOX - National System of Toxic-Pharmacological Information. https://sinitox.icict.fiocruz.br/dados-nacionais [In Portuguese] SINITOX. (2017b). Pesticides and health. SINITOX - National System of Toxic-Pharmacological Information. https://sinitox.icict.fiocruz.br/agrotóxicos-e-saúde [In Portuguese] Soares, J. P. G., Neves, D. L., & de CARVALHO, J. M. (2014). Organic beef production: challenges and technologies for an expanding market. In Embrapa Cerrados. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/113536/1/34242.pdf [In Portuguese] Solomon, K., & Thompson, D. (2003). Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. Journal of Toxicology and Environmental Health, Part B, 6(3), 289–324. https://doi.org/10.1080/10937400306468 Sportelli, M., Frasconi, C., Fontanelli, M., Pirchio, M., Gagliardi, L., Raffaelli, M., et al. (2022). Innovative living mulch management strategies for organic conservation field vegetables: Evaluation of continuous mowing, flaming, and tillage performances. Agronomy, 12(3), 622. https://doi.org/10.3390/agronomy12030622 Sule, R. O., Condon, L., & Gomes, A. V. (2022). A common feature of pesticides: Oxidative stress—the role of oxidative stress in pesticide-induced toxicity. Oxidative Medicine and Cellular Longevity, 2022, 1–31. https://doi.org/10.1155/2022/5563759 Sylwestrzak, Z., Zgrundo, A., & Pniewski, F. (2021). Ecotoxicological studies on the effect of Roundup® (glyphosate formulation) on marine benthic microalgae. International Journal of Environmental Research and Public Health, 18(3), 884. https://doi.org/10.3390/ijerph18030884 Tarazona, J. V., Court-Marques, D., Tiramani, M., Reich, H., Pfeil, R., Istace, F., & Crivellente, F. (2017). Glyphosate toxicity and carcinogenicity: A review of the scientific basis of the European Union assessment and its differences with IARC. Archives of Toxicology, 91(8), 2723–2743. https://doi.org/10.1007/s00204-017-1962-5 Tiago, J. P. F., Sicupira, L. C., Barros, R. E., de Pinho, G. P., & Silvério, F. O. (2020). Simultaneous and direct determination of glyphosate and AMPA in water samples from the hydroponic cultivation of eucalyptus seedlings using HPLC-ICP-MS/MS. Journal of Environmental Science and Health, Part B, 55(6), 558–565. https://doi.org/10.1080/03601234.2020.1733369 Tomlin, C. D. S. (2009). The pesticide manual: A world compendium. British Crop Production Council. Torretta, V., Katsoyiannis, I., Viotti, P., & Rada, E. (2018). Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability, 10(4), 950. https://doi.org/10.3390/su10040950 Travlos, I., Rapti, E., Gazoulis, I., Kanatas, P., Tataridas, A., Kakabouki, I., & Papastylianou, P. (2020). The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy, 10(11), 1687. https://doi.org/10.3390/agronomy10111687 Tsui, M. T. K., & Chu, L. M. (2003). Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere, 52(7), 1189–1197. https://doi.org/10.1016/S0045-6535(03)00306-0 Tuomisto, H. L., Hodge, I. D., Riordan, P., & Macdonald, D. W. (2012). Does organic farming reduce environmental impacts? – A meta-analysis of European research. Journal of Environmental Management, 112, 309–320. https://doi.org/10.1016/j.jenvman.2012.08.018 Türkkan, M., Erper, İ, Eser, Ü., & Baltacı, A. (2018). Evaluation of inhibitory effect of some bicarbonate salts and fungicides against hazelnut powdery mildew. Gesunde Pflanzen, 70(1), 39–44. https://doi.org/10.1007/s10343-017-0411-y U.S. Department of Agriculture. (2006). Pelargonic Acid Crops. https://www.ams.usda.gov/sites/default/files/media/Pel acid Technical Advisory Panel Report.pdf Ulysséa de Leal, D., & da Silva Lopes, I. (2021). Shared responsibilities and risks? risk communication in the reverse logistics of pesticide packaging. In Agrárias: Pesquisa e Inovação nas Ciências que Alimentam o Mundo V (pp. 329–343). Editora Artemis [In Portuguese]. https://doi.org/10.37572/EdArt_29042134728 Villamar-Ayala, C. A., Carrera-Cevallos, J. V., Vasquez-Medrano, R., & Espinoza-Montero, P. J. (2019). Fate, eco-toxicological characteristics, and treatment processes applied to water polluted with glyphosate: A critical review. Critical Reviews in Environmental Science and Technology, 49(16), 1476–1514. https://doi.org/10.1080/10643389.2019.1579627 Vilpoux, O. F., Gonzaga, J. F., & Pereira, M. W. G. (2021). Agrarian reform in the Brazilian Midwest: Difficulties of modernization via conventional or organic production systems. Land Use Policy, 103, 105327. https://doi.org/10.1016/j.landusepol.2021.105327 Webber, C. L., Taylor, M. J., & Shrefler, J. W. (2014). Weed control in yellow squash using sequential postdirected applications of pelargonic acid. HortTechnology, 24(1), 25–29. Williams, G. M., Kroes, R., & Munro, I. C. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology, 31(2), 117–165. https://doi.org/10.1006/rtph.1999.1371 Xu, J., Smith, S., Smith, G., Wang, W., & Li, Y. (2019). Glyphosate contamination in grains and foods: An overview. Food Control, 106, 106710. Żelazny, W. R., & Licznar-Małańczuk, M. (2018). Soil quality and tree status in a twelve-year-old apple orchard under three mulch-based floor management systems. Soil and Tillage Research, 180, 250–258. Zhang, L., Rana, I., Shaffer, R. M., Taioli, E., & Sheppard, L. (2019). Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutation Research/reviews in Mutation Research, 781, 186–206. https://doi.org/10.1016/j.mrrev.2019.02.001 Zoller, O., Rhyn, P., Rupp, H., Zarn, J. A., & Geiser, C. (2018). Glyphosate residues in Swiss market foods: Monitoring and risk evaluation. Food Additives and Contaminants: Part B, 11(2), 83–91. https://doi.org/10.1080/19393210.2017.1419509