Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination

Springer Science and Business Media LLC - Tập 23 Số 19 - Trang 18988-19001 - 2016
Shahla Hosseini Bai1, Steven M. Ogbourne1
1Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Accinelli C, Screpanti C, Vicari A, Catizone P (2004) Influence of insecticidal toxins from Bacillus thuringiensis subsp. kurstaki on the degradation of glyphosate and glufosinate-ammonium in soil samples. Agr Ecosys Environ 103:497–507

Al-Rajab AJ, Schiavon M (2010) Degradation of 14C-glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils. J Environ Sci 22:1374–1380

Alister C, Kogan M, Pino I (2005) Differential phytotoxicity of glyphosate in maize seedlings following applications to roots or shoot. Weed Res 45:27–32

Anadon A, Martinez-Larranaga M, Martínez M, Castellano V, Martínez M, Martin M, Nozal M, Bernal J (2009) Toxicokinetics of glyphosate and its metabolite aminomethyl phosphonic acid in rats. Toxicol letters 190:91–95

Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34:458–479

Araújo AS, Monteiro RT, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

Arango L, Buddrus-Schiemann K, Opelt K, Lueders T, Haesler F, Schmid M, Ernst D, Hartmann A (2014) Effects of glyphosate on the bacterial community associated with roots of transgenic Roundup Ready® soybean. Eur J Soil Biol 63:41–48

Arregui MC, Lenardón A, Sanchez D, Maitre MI, Scotta R, Enrique S (2004) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manag Sci 60:163–166

Sciences AL (1997) HR-001: 24-month oral chronic toxicity and oncogenicity study in rats. The Institute of Environmental Toxicology, Tokyo

Australian Drinking Water Guidelines 6, 2011. http://www.clearwater.asn.au/user-data/.../Aust_drinking_water_guidelines , Downloded 23-Feb-15.

Bai SH, Blumfield T, Xu Z, Chen C, Wild C (2012a) Soil organic matter dynamics and nitrogen availability in response to site preparation and management during revegetation in tropical Central Queensland, Australia. J Soils Sediments 12:386–395

Bai SH, Blumfield T, Xu Z, Chen C, Wild C (2012b) Effects of pre-planting site management on soil organic matter and microbial community functional diversity in subtropical Australia. Appl Soil Ecol 62:31–36

Bai SH, Blumfield T, Xu Z, Chen C, Wild C (2014) Soil carbon and nitrogen dynamics in the first year following herbicide and scalping in a revegetation trial in south-east Queensland, Australia. Environ Sci Pollut Res 21:5167–5176

Battaglin W, Meyer M, Kuivila K, Dietze J (2014) Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. J Am Water Resour Assoc 50:275–290

Benedetti ASL, Vituri CDL, Trentin AG, Domingues MAC, Alvarez-Silva M (2004) The effects of sub-chronic exposure of Wistar rats to the herbicide Glyphosate-Biocarb®. Toxicol Letters 153:227–232

Bergström L, Börjesson E, Stenström J (2011) Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil. J Environ Qual 40:98–108

Bernal J, Martin MT, Soto ME, Nozal MJ, Marotti I, Dinelli G, Bernal JL (2012) Development and application of a LC-MS method to evaluate the glyphosate and aminomethylphosphonic acid dissipation in maize plants after foliar treatment. J Agr Food Chem 60:4017–4025

Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456

Bohm B, Mariza G, Rombaldi CV, Genovese MI, Castilhos D, Rodrigues Alves BJ, Rumjanek NG (2014) Glyphosate effects on yield, nitrogen fixation, and seed quality in glyphosate-resistant soybean. Crop Sci 54:1737–1743

Bøhn T, Cuhra M, Traavik T, Sanden M, Fagan J, Primicerio R (2014) Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans. Food Chem 153:207–215

Bott S, Tesfamariam T, Candan H, Cakmak I, Römheld V, Neumann G (2008) Glyphosate-induced impairment of plant growth and micronutrient status in glyphosate-resistant soybean (Glycine max L.). Plant Soil 312:185–194

Braz-Mota S, Sadauskas-Henrique H, Duarte RM, Val AL, Almeida-Val VM (2015) Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere 135:53–60

Çağlar S, Kolankaya D (2008) The effect of sub-acute and sub-chronic exposure of rats to the glyphosate-based herbicide Roundup. Environ Toxicol Pharmacol 25:57–62

Casabé N, Piola L, Fuchs J, Oneto ML, Pamparato L, Basack S, Giménez R, Massaro R, Papa JC, Kesten E (2007) Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field J Soils Sediments 7:232–239

Chan P, Mahler J (1992) NTP technical report on the toxicity studies of glyphosate (CAS No. 1071-83-6) administered in dosed feed to F344/N rats and B6C3F1 mice. Toxicity report 16:1–D3

Cheminova (1993) Glyphosate: 104 week dietary carcinogenicity study in mice. Inveresk Research International, Ltd., Tranent

Chruscielska K, Brzezinski J, Kita K, Kalhorn D, Kita I, Graff stein B, Korzeniowski P (2000) Glyphosate—evaluation of chronic activity and possible far-reaching eff ects. Part 1. Studies on chronic toxicity. Pestycydy 3-4:11–20

Correia FV, Moreira JC (2010) Effects of glyphosate and 2, 4-D on earthworms (Eisenia foetida) in laboratory tests. Bull Environ Contam Toxicol 85:264–268

Cox C (1995) Glyphosate, part 1: toxicology. Journal of Pesticide Reform 108:1–13

Cuervo JL, Fuentes CL (2014) Mineralization and sorption of 14C-glyphosate in samples from three soil types collected in El Espinal, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 38:287–297

Currie Z, Prosser RS, Rodriguez-Gil JL, Mahon K, Poirier D, Solomon KR (2015) Toxicity of Cupside 480SL® Sprasy mixture formulation of glyphosate to aquatic organisms. Environ Toxicol Chem 34:1178–1184

Dallegrave E, Mantese FD, Oliveira RT, Andrade AJ, Dalsenter PR, Langeloh A (2007) Pre-and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch Toxicol 81:665–673

Domínguez A, Brown GG, Sautter KD, de Oliveira CM, de Vasconcelos EC, Niva CC, Bartz ML, Bedano JC (2016) Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Scientific Reports 6:19731

Druart C, Millet M, Scheifler R, Delhomme O, De Vaufleury A (2011) Glyphosate and glufosinate-based herbicides: fate in soil, transfer to, and effects on land snails. J. Soils Sediments 11:1373–1384

Druille M, Cabello MN, Omacini M, Golluscio RA (2013) Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol 64:99–103

Duke SO (2015) Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Manag Sci 71:652–657

Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R (2012) Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J Agr Food Chem 60:10375–10397

Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

Duke SO, Baerson SR, Rimando AM (2003a) Glyphosate. Encyclopedia of agrochemicals. J.R. Plimmer, D.W. Gammon, N.N. Ragsdale, eds., Wiley, New York.

Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003b) Isoflavone, glyphosate, and aminomethylphosphonic acid in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agr Food Chem 51:340–344

Environmental Protection Agency (2015) Basic information about glyphosate in drinking water. http://water.epa.gov/drink/contaminants/basicinformation/glyphosate.cfm#four . Viewed 23-Feb-15.

EFSA (European Food Safety Authority) (2015) Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate 1. EFSA J 13(11):4302

Ehling S, Reddy TM (2015) Analysis of glyphosate and aminomethylphosphonic acid in nutritional ingredients and milk by derivatization with Fluorenylmethyloxycarbonyl chloride and liquid chromatography−mass spectrometry. J Agr Food Chem 63:10562–10568

Estes FL (1979) 90-Day Subacute Rat Toxicity Study. Unpublished report, International Research and Development Corporation, Mattawan, Michigan.

Schwebda F (1996) Combined chronic toxicity and carcinogenicity study with glyphosate technical in Wistar rats. Rallis India, Ltd., Bangalore

Schwebda F (2001) Carcinogenicity study with glyphosate technical in Swiss albino mice. Rallis India, Ltd., Bangalore

FAO (2005) Glyphosate (158), Pesticide residues in food. FAO plant production and protection paper 183. Joint FAO/WHO Meetings on Pesticide Residues, Food and Agriculture Organisation, Rome, Italy, pp. 122–144. http://www.fao.org/docrep/009/a0209e/a0209e0d.htm#bm13 . Accessed 16-Mar-15.

Fusilero MA, Mangubat J, Ragas RE, Baguinon N, Taya H, Rasco E (2013) Weed management systems and other factors affecting the earthworm population in a banana plantation. Eur J Soil Biol 56:89–94

García-Pérez JA, Alarcón-Gutiérrez E, Perroni Y, Barois I (2014) Earthworm communities and soil properties in shaded coffee plantations with and without application of glyphosate. Appl Soil Ecol 83:230–237

Gasnier C, Dumont C, Benachour N, Clair E, Chagnon M-C, Séralini G-E (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicol 262:184–191

George J, Prasad S, Mahmood Z, Shukla Y (2010) Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach. J Proteom 73:951–964

Ghafoor A, Jarvis N, Thierfelder T, Stenström J (2011) Measurements and modeling of pesticide persistence in soil at the catchment scale. Sci Total Environ 409:1900–1908

Gimou M-M, Charrondiere U, Leblanc J-C, Pouillot R (2008) Dietary exposure to pesticide residues in Yaoundé: the Cameroonian total diet study. Food Additi Contam 25:458–471

Gimsing AL, Borggaard OK, Bang M (2004) Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci 55:183–191

Glyphosate–Renewal Assessment Report (2013) Glyphosate_RAR_01_Volume_1_2013–12-18_san.pdf

Greim H, Saltmiras D, Mostert V, Strupp C (2015) Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies. Crit Rev Toxicol 45:185–208

Grunewald K, Schmidt W, Unger C, Hanschmann G (2001) Behavior of glyphosate and aminomethylphosphonic acid in soils and water of reservoir Radeburg II catchment (Saxony/Germany). J Plant Nutr Soil Sci 164:65–70

Guyton KZ, Loomis D, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, Straif K (2015) Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology 16:490–491

Harris CA, Gaston CP (2004) Effects of refining predicted chronic dietary intakes of pesticide residues: a case study using glyphosate. Food Addit Contam 21:857–864

Haslam E (2014) The shikimate pathway: biosynthesis of natural products series. Elsevier, Amsterdam

Holson JF (1991) A developmental toxicology study of AMPA in rats. Unpublished report, WIL Research Laboratories, Inc., Ashland, OH.

Horth H, Blackmore K (2009) Survey of glyphosate and AMPA in groundwaters and surface waters in Europe. Report by WRc plc, Swindon, Wiltshire, United Kingdom No: UC8073 2

Jensen PK, Wujcik CE, McGuire MK, McGuire MA (2016) Validation of reliable and selective methods for direct determination of glyphosate and aminomethylphosphonic acid in milk and urine using LC-MS/MS. Journal of Environmental Science and Health, Part B 51:254–259

Johnson-Maynard J, Lugo-Perez J (2006) Earthworm populations, microbial biomass and coffee production in different experimental agroforestry management systems in Costa Rica. Carib J Sci 42:397–409

Kier LD, Kirkland DJ (2013) Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit Rev Toxicol 43:283–315

King JJ, Wagner RS (2010) Toxic effects of the herbicide Roundup® Regular on Pacific Northwestern amphibians. Northwest Nat 91:318–324

Knezevich AL (1983) A chronic feeding study of glyphosate (Roundup technical) in mice. Unpublished report, Bio/Dynamics, Inc., East Millstone, NJ.

Koller V, Fürhacker M, Nersesyan A, Mišík M, Eisenbauer M, Knasmueller S (2012) Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch Toxicol 86:805–813

Krebs C (2011) Farmers look to broader strategies to battle weeds. AG J. March 11

Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 31(3):153–161

Kwiatkowska M, Huras B, Bukowska B (2014) The effect of metabolites and impurities of glyphosate on human erythrocytes (invitro). Pestic Biochem Phys 109:34–43

Laitinen P, Rämö S, Nikunen U, Jauhiainen L, Siimes K, Turtola E (2009) Glyphosate and phosphorus leaching and residues in boreal sandy soil. Plant Soil 323:267–283

Lanaro R, Costa JL, Cazenave SO, Zanolli-Filho LA, Tavares MF, Chasin AA (2015) Determination of herbicides paraquat, glyphosate, and aminomethylphosphonic acid in marijuana samples by capillary electrophoresis. J Forensic Sci 60(Suppl 1):S241–S247

Lankas GR (1981) A lifetime feeding study of glyphosate (Roundup technical) in rats. Unpublished report, Bio/Dynamics, Inc., East Millstone, NJ.

Levine SL, von Mérey G, Minderhout T, Manson P, Sutton P (2015) Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas. Environ Toxicol Chem. doi: 10.1002/etc.2940

Lu FC (1995) A review of the acceptable daily intakes of pesticides assessed by WHO. Regul. Toxicol Pharm 21:352–364

Ma J, Bu Y, Li X (2015) Immunological and histopathological responses of the kidney of common carp (Cyprinus carpio L.) sublethally exposed to glyphosate. Environ Toxicol Pharm 39:1–8

Mamy L, Barriuso E, Gabrielle B (2005) Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Pest Manag Sci 61:905–916

Mateos-Naranjo E, Perez-Martin A (2013) Effects of sub-lethal glyphosate concentrations on growth and photosynthetic performance of non-target species Bolboschoenus maritimus. Chemosphere 93:2631–2638

Mercurio P, Flores F, Mueller JF, Carter S, Negri AP (2015) Glyphosate persistence in seawater. Mar Pollut Bull 85:385–390

Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE (2015) Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 84:133–153

Monsanto (1981) A lifetime feeding study of glyphosate (roundup ® technical) in rats. Bio/dynamics Inc., East Millstone

Monsanto (1983) A chronic feeding study of glyphosate (roundup ® technical) in mice. Bio/dynamics, Inc., East Millstone

Monsanto (1990) Chronic study of glyphosate administered in feed to albino rats. Monsanto Agricultural Company, St. Louis

Morillo E, Undabeytia T, Maqueda C, Ramos A (2000) Glyphosate adsorption on soils of different characteristics: influence of copper addition. Chemosphere 40:103–107

McQueen H, Callan AC, Hinwood AL (2012) Estimating maternal and prenatal exposure to glyphosate in the community setting. Intern J Hyg Environ Health 215:570–576

Newton M, Horner LM, Cowell JE, White DE, Cole EC (1994) Dissipation of glyphosate and aminomethylphosphonic acid in North American forests. J Agr Food Chem 42:1795–1802

Niemann L, Sieke C, Pfeil R, Solecki R (2015) A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbr Lebensm 10:3–12

Nufarm (2009) Glyphosate technical: dietary carcinogenicity study in the mouse. Harlan Laboratories Ltd, Derbyshire, UK

Nguyen DB, Rose MT, Rose TJ, Morris SG (2016) Van Zwieten L. Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis Soil Biology and Biochemistry 92:50–57

Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE (2010) Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res Toxicol 23:1586–1595

Parrot F, Bedry R, Favarel-Garrigues J-C (1995) Glyphosate herbicide poisoning: use of a routine aminoacid analyzer appears to be a rapid method for determining glyphosate and its metabolite in biological fluids. Clin Toxicol 33:695–698

Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. A review. Agronr Sustain Develop 34:199–228

Pereira JL, Antunes SC, Castro BB, Marques CR, Gonçalves AM, Gonçalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18:455–463

Poletta G, Larriera A, Kleinsorge E, Mudry M (2009) Genotoxicity of the herbicide formulation Roundup®(glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mut. Res./gen. Tox En 672:95–102

Prasad S, Srivastava S, Singh M, Shukla Y (2009) Clastogenic effects of glyphosate in bone marrow cells of Swiss albino mice. J Toxicol 2009:308985

Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agr Food Chem 52:5139–5143

Reddy KN, Rimando AM, Duke SO, Nandula VK (2008) Aminomethylphosphonic acid accumulation in plant species treated with glyphosate. J Agr Food Chem 56:2125–2130

Reyna MS (1990) Two generation reproduction feeding study with glyphosate in sprague–dawley rats. Unpublished report, Monsanto Environmental Health Laboratory, St. Louis, MO.

Reyna MS, Ruecker FA (1985) Twelve month study of glyphosate administered by gelatin capsule to beagle dogs. Unpublished report, Mosanto Environmental Health Laboratory, St. Louis, MO.

Roberts DM, Buckley NA, Mohamed F, Eddleston M, Goldstein DA, Mehrsheikh A, Bleeke MS, Dawson AH (2010) A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning. Clin Toxicol 48:129–136

Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi MM, Nunes MT, de Oliveira CA (2012) Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol 86:663–673

Rubio F, Guo E, Kamp L (2014) Survey of glyphosate residues in honey, corn and soy products. J Environ Anal Toxicol 4:249. doi: 10.4172/2161-0525.1000249

Schroeder RE (1981) A three-generation reproduction study with glyphosate in rats. Unpublished report, Bio/Dynamics, Inc., East Millstone, NJ.

Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789

Santadino M, Coviella C, Momo F (2014) Glyphosate sublethal effects on the population dynamics of the earthworm Eisenia fetida (Savigny, 1826). Water Air Soil Pollut 225:1–8

Siehl DL (1997) Inhibitors of EPSP synthase, glutamine synthase and histidine synthesis, in Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, ed. By Roe R.M/, Burton, J.D. and Kuhr, R.J., IOS Press, Amsterdam, The Netherlands, pp. 37–67.

Shehata AA, Schrödl W, Aldin AA, Hafez HM, Krüger M (2013) The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Current Microbiol 66:350–358

Shushkova T, Vasilieva G, Ermakova I, Leontievsky A (2009) Sorption and microbial degradation of glyphosate in soil suspensions. Appl Biochem Microbiol 45:599–603

Solomon K, Thompson D (2003) Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. Journal of Toxicology and Environmental Health Part B: Crit Rev 6:289–324

Saunders LE, Pezeshki R (2015) Glyphosate in runoff waters and in the root-zone: A review toxics 3:462–480

Stout LD, Johnson CW (1987) 90-day study of glyphosate administered in feed to sprague–sawley rats. Unpublished report, Monsanto Environmental Health Laboratory, St. Louis, MO.

Stout LD, Ruecker FA (1990) Chronic study of glyphosate administered in feed to albino rats. Unpublished report, Monsanto Environmental Health Laboratory, St. Louis, MO.

Struger J, Thompson D, Staznik B, Martin P, McDaniel T, Marvin C (2008) Occurrence of glyphosate in surface waters of southern Ontario. Bull Environ Contam Toxicol 80:378–384

Swanson NL, Leu A, Abrahamson J, Wallet B (2014) Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. J. Organic Systems 9:6–37

Syan HS, Prasher SO, Pageau D, Singh J (2014) Dissipation and persistence of major herbicides applied in transgenic and non-transgenic canola production in Quebec. Eur J Soil Biol 63:21–27

Syngenta (2001) Glyphosate acid: two year dietary toxicity and oncogenicity study in rats. Central Toxicology Laboratory, Alderley Park Macclesfi eld, Cheshire, UK: Syngenta.

Székács A, Darvas B (2012) Forty years with glyphosate. Herbicides–properties, synthesis and control of weeds Ed Hasaneen, MNAE-G, InTech, Croatia.

Tasker EJ (1980a) Teratology study in rats. Unpublished report, International Research and Development Corporation, Mattawan, MI.

Tasker EJ (1980b) Teratology study in rabbits. Unpublished report, International Research and Development Corporation, Mattawan, MI.

Thongprakaisang S, Thiantanawat A, Rangkadilok N, Suriyo T, Satayavivad J (2013) Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol 59:129–136

Tierney WJ (1979) A three month feeding study of glyphosate (Roundup technical) in mice. Unpublished report, Bio/Dynamics, Inc., East Millstone, NJ.

Tompkins EC (1991) 90-day oral (capsule) toxicity study in dogs with AMPA. Unpublished report, WIL Research Laboratories, Inc., Ashland, OH.

Van Stempvoort D, Roy J, Brown S, Bickerton G (2014) Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere 95:455–463

WHO (World Health Organisation), 1994. Glyphosate. Environmental Health Criteria 159. The Internal Programme on Chemical Safety (IPCS), WHO, Geneva. Cited in: Buffin, D., Jewell, T. (2001). Health and Environmental Impact of Glyphosate: The Implications of Increased use of Glyphosate in Association with Genetically Modified Crops. In: Riley, P., Taylor, M., Diamand, E., Barron, H., (Eds.). UK, pp. 1–40.

Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

Wolmarans K, Swart WJ (2014) Influence of glyphosate, other herbicides and genetically modified herbicide-resistant crops on soil microbiota: a review. South Afr J Plant Soil 31:177–186

Yang C, Shen S, Wang M, Li J (2013) Mild salinization stimulated glyphosate degradation and microbial activities in a riparian soil from Chongming Island, China.

Yu Y, Zhou QX (2005) Adsorption characteristics of pesticides methamidophos and glyphosate by two soils. Chemosphere 58:811–816

Zabaloy MC, Gómez E, Garland JL, Gómez MA (2012) Assessment of microbial community function and structure in soil microcosms exposed to glyphosate. Appl Soil Ecol 61:333–339

Zhang C, Hu X, Luo J, Wu Z, Wang L, Li B, Wang Y, Sun G (2015) Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules 20:1161–1175

Zhou CF, Wang YJ, Yu YC, Sun RJ, Zhu XD, Zhang HL, Zhou DM (2012) Does glyphosate impact on Cu uptake by, and toxicity to, the earthworm Eisenia fetida? Ecotoxicology 21:2297–2305

Zobiole LH, Oliveira RS Jr, Visentainer JV, Kremer RJ, Bellaloui N, Yamada T (2010) Glyphosate affects seed composition in glyphosate-resistant soybean. J Agr Food Chem 58:4517–4522