Glycerol and Water Mediated Synthesis of Silver Nanowires in the Presence of Cobalt Chloride as Growth Promoting Additive
Tóm tắt
High quality silver nanowires (AgNWs) were synthesized by using CoCl2 as a growth promoting additive in glycerol/water combination as a solvent. This method is not only time saving but also helpful to control morphology of AgNWs. A series of experiments were performed to optimize volume ratio of glycerol to water (G/W). The synergetic effect of the volume ratio of G/W and concentration of growth promoting additive on the morphology of AgNWs was investigated. The possible mechanism for the growth of AgNWs was elucidated by monitoring in situ generation of AgCl as a prominent event. Controlled experiments were performed to investigate the role of individual cobalt and chloride ions by using Co(NO3)2 and NaCl, respectively. The obtained AgNWs were characterized by SEM, TEM and XRD, while surface properties of the obtained AgNWs were studied by XPS. It was found that at specific volume ratio of G/W (3.5:1), mole ratio of PVP to AgNO3 (0.7:1) and concentration of CoCl2 (4 mM), high quality AgNWs were obtained.
Tài liệu tham khảo
L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2955–2963 (2010)
C.-H. Liu, X. Yu, Nanoscale Res. Lett. 6, 75 (2011)
S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, ACS Nano 3, 1767–1774 (2009)
A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, Adv. Mater. 22, 3558–3563 (2010)
Z. Huang, X. Jiang, D. Guo, N. Gu, J. Nanosci. Nanotechnol. 11, 9395–9408 (2011)
H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Phys. Rev. Lett. 95, 257403–257404 (2005)
Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Nano Lett. 10, 1950–1954 (2010)
M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Chem. Rev. 111, 3669–3712 (2011)
X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66–69 (2001)
W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)
Y.T. Pang, G.W. Meng, Q. Fang, L.D. Zhang, Nanotechnology 14, 20–24 (2003)
X.H. Hu, C.T. Chan, Appl. Phys. Lett. 85, 1520–1522 (2004)
K. Caswell, C.M. Bender, C.J. Murphy, Nano Lett. 3, 667–669 (2003)
D. Chen, X. Qiao, J. Chen, J. Mater. Sci. 22, 1335–1339 (2011)
Y.G. Sun, Y.N. Xia, Adv. Mater. 14, 833–837 (2002)
Y.G. Sun, Y.D. Yin, B.T. Mayers, T. Herricks, Y.N. Xia, Chem. Mater. 14, 4736–4745 (2002)
Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, Chem. Phys. Lett. 380, 146–149 (2003)
M.L. Tsuji, Y. Nishizawa, M. Hashimoto, T. Tsuji, Chem. Lett. 33, 370–371 (2004)
C.-W. Chu, H. Yang, W.-J. Hou, J. Huang, G. Li, Y. Yang, Appl. Phys. Lett. 92, 103306 (2008)
Y. Gao, P. Jiang, L. Song, L.F. Liu, X.Q. Yan, Z.Q. Zhou, D.F. Liu, J.X. Wang, H.J. Yuan, Z.X. Zhang, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, S.S. Xie, J. Phys. D Appl. Phys. 38, 1061–1067 (2005)
F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ion. 32–3, 198–205 (1989)
K.E. Korte, S.E. Skrabalak, Y. Xia, J. Mater. Chem. 18, 437–441 (2008)
S.H. Im, Y.T. Lee, B. Wiley, Y.N. Xia, Angew. Chem. Int. Ed. Engl. 44, 2154–2157 (2005)
B. Wiley, T. Herricks, Y.G. Sun, Y.N. Xia, Nano Lett. 4, 1733–1739 (2004)
S.H. Im, Y.T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed. 44, 2154–2157 (2005)
R. Long, S. Zhou, B.J. Wiley, Y. Xiong, Chem. Soc. Rev. 43, 6288–6310 (2014)
B. Li, R. Long, X. Zhong, Y. Bai, Z. Zhu, X. Zhang, M. Zhi, J. He, C. Wang, Z.-Y. Li, Y. Xiong, Small 8, 1710–1716 (2012)
Y. Gu, F. Jerome, Green Chem. 12, 1127–1138 (2010)
J.I. Garcia, H. Garcia-Marin, E. Pires, Green Chem. 16, 1007–1033 (2014)
Y. Wang, Y. Zheng, C.Z. Huang, Y. Xia, J. Am. Chem. Soc. 135, 1941–1951 (2013)
R.J. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji, B. Jeyadevan, J. Solid State Chem. 180, 3008–3018 (2007)
Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 3, 955–960 (2003)
G.P. Association, Physical properties of glycerine and its solutions. Glycerine Producers’ Association (1963)
C. Yang, H. Gu, W. Lin, M.M. Yuen, C.P. Wong, M. Xiong, B. Gao, Adv. Mater. 23, 3052–3056 (2011)
J. Kestin, M. Sokolov, W.A. Wakeham, J. Phys. Chem. Ref. Data 7, 941–948 (1978)
N.M. Abbasi, H. Yu, L. Wang, Zain-ul-Abdin, W.A. Amer, M. Akram, H. Khalid, Y. Chen, M. Saleem, R. Sun, J. Shan Mater. Chem. Phys. 166, 1–15 (2015)
J.Q. Hu, Q. Chen, Z.X. Xie, G.B. Han, R.H. Wang, B. Ren, Y. Zhang, Z.L. Yang, Z.Q. Tian, Adv. Funct. Mater. 14, 183–189 (2004)
A.R. Tao, S. Habas, P. Yang, Small 4, 310–325 (2008)
V.K. Lamer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847–4854 (1950)
Y. Wang, S.-I. Choi, X. Zhao, S. Xie, H.-C. Peng, M. Chi, C.Z. Huang, Y. Xia, Adv. Funct. Mater. 24, 131–139 (2014)