Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice

Redox Biology - Tập 38 - Trang 101797 - 2021
Mary E. Robbins1, Hye‐Youn Cho2, Jason M. Hansen3, Joseph R. Luchsinger4, Morgan L. Locy5, Markus Velten6, Steven R. Kleeberger2, Lynette K. Rogers7, Trent E. Tipple8
1Division of Neonatology, Department of Pediatrics, Northwestern University, Chicago, IL, USA
2Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
3Physiology & Developmental Biology, Brigham Young University, Provo, UT, USA
4Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
5Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
6Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich- Wilhelms University, University Medical Center, Bonn, Germany
7Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
8Center for Pregnancy and Newborn Research, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Crapo, 1986, Morphologic changes in pulmonary oxygen toxicity, Annu. Rev. Physiol., 48, 721, 10.1146/annurev.ph.48.030186.003445

Barrios, 2001, Oxygen-induced pulmonary injury in gamma-glutamyl transpeptidase-deficient mice, Lung, 179, 319, 10.1007/s004080000071

Nordberg, 2001, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system, Free Radic. Biol. Med., 31, 1287, 10.1016/S0891-5849(01)00724-9

Eriksson, 2015, Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver, Nat. Commun., 6, 6479, 10.1038/ncomms7479

Iverson, 2013, A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification, Free Radic. Biol. Med., 10.1016/j.freeradbiomed.2013.05.028

Rogers, 2004, Analyses of glutathione reductase hypomorphic mice indicate a genetic knockout, Toxicol. Sci., 82, 367, 10.1093/toxsci/kfh268

Schirmer, 1989, Coenzymes and cofactors, 553

Tipple, 2007, Thioredoxin-related mechanisms in hyperoxic lung injury in mice, Am. J. Respir. Cell Mol. Biol., 37, 405, 10.1165/rcmb.2006-0376OC

Williams, 1992, 121

Britt, 2014, The thioredoxin reductase-1 inhibitor aurothioglucose attenuates lung injury and improves survival in a murine model of acute respiratory distress syndrome, Antioxidants Redox Signal., 20, 2681, 10.1089/ars.2013.5332

Dunigan, 2018, The thioredoxin reductase inhibitor auranofin induces heme oxygenase-1 in lung epithelial cells via nrf2-dependent mechanisms, Am. J. Physiol. Lung Cell Mol. Physiol., 10.1152/ajplung.00214.2018

Li, 2018, Aurothioglucose does not improve alveolarization or elicit sustained Nrf2 activation in C57BL/6 models of bronchopulmonary dysplasia, Am. J. Physiol. Lung Cell Mol. Physiol., 314, L736, 10.1152/ajplung.00539.2017

Li, 2016, Thioredoxin reductase inhibition attenuates neonatal hyperoxic lung injury and enhances Nrf2 activation, Am. J. Respir. Cell Mol. Biol., 10.1165/rcmb.2015-0228OC

Locy, 2012, Thioredoxin reductase inhibition elicits nrf2-mediated responses in Clara cells: implications for oxidant-induced lung injury, Antioxidants Redox Signal., 10.1089/ars.2011.4377

Tindell, 2018, Selenium supplementation of lung epithelial cells enhances nuclear factor E2-related factor 2 (Nrf2) activation following thioredoxin reductase inhibition, Redox Biol, 19, 331, 10.1016/j.redox.2018.07.020

Pretsch, 1999, Glutathione reductase activity deficiency in homozygous Gr1a1Neu mice does not cause haemolytic anaemia, Genet. Res., 73, 1, 10.1017/S0016672398003590

Yan, 2012, Glutathione reductase facilitates host defense by sustaining phagocytic oxidative burst and promoting the development of neutrophil extracellular traps, J. Immunol., 188, 2316, 10.4049/jimmunol.1102683

Halvey, 2005, Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling, Biochem. J., 386, 215, 10.1042/BJ20041829

Jones, 2002, Redox potential of GSH/GSSG couple: assay and biological significance, Methods Enzymol., 348, 93, 10.1016/S0076-6879(02)48630-2

Velten, 2010, Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure, J. Appl. Physiol., 108, 1347, 10.1152/japplphysiol.01392.2009

Cho, 2012, Targeted deletion of Nrf2 impairs lung development and oxidant injury in neonatal mice, Antioxidants Redox Signal., 10.1089/ars.2011.4288

Flohe, 2013, The fairytale of the GSSG/GSH redox potential, Biochim. Biophys. Acta, 1830, 3139, 10.1016/j.bbagen.2012.10.020

Berkelhamer, 2013, Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung, Free Radic. Biol. Med., 61, 51, 10.1016/j.freeradbiomed.2013.03.003

Lavoie, 1998, Development of glutathione synthesis and gamma-glutamyltranspeptidase activities in tissues from newborn infants, Free Radic. Biol. Med., 24, 994, 10.1016/S0891-5849(97)00384-5

Berkelhamer, 2014, Developmental regulation of antioxidant enzymes and their impact on neonatal lung disease, Antioxidants Redox Signal., 21, 1837, 10.1089/ars.2013.5515

Lindeman, 1995, Diminished protection against copper-induced lipid peroxidation by cord blood plasma of preterm and term infants, JPEN - J. Parenter. Enter. Nutr., 19, 373, 10.1177/0148607195019005373

Lindeman, 2000, Postnatal changes in plasma ceruloplasmin and transferrin antioxidant activities in preterm babies, Biol. Neonate, 78, 73, 10.1159/000014252

Hsia, 2010, An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure, Am. J. Respir. Crit. Care Med., 181, 394, 10.1164/rccm.200809-1522ST

Amy, 1977, Postnatal growth of the mouse lung, J. Anat., 124, 131

Mund, 2008, Developmental alveolarization of the mouse lung, Dev. Dynam., 237, 2108, 10.1002/dvdy.21633

Herriges, 2014, Lung development: orchestrating the generation and regeneration of a complex organ, Development, 141, 502, 10.1242/dev.098186

Schittny, 2017, Development of the lung, Cell Tissue Res., 367, 427, 10.1007/s00441-016-2545-0

Bates, 2016, Systems physiology of the airways in health and obstructive pulmonary disease, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8, 423

Cheong, 2018, An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia, Semin. Perinatol., 42, 478, 10.1053/j.semperi.2018.09.013

Narang, 2006, Airway function measurements and the long-term follow-up of survivors of preterm birth with and without chronic lung disease, Pediatr. Pulmonol., 41, 497, 10.1002/ppul.20385

Shepherd, 2018, Infant pulmonary function testing and phenotypes in severe bronchopulmonary dysplasia, Pediatrics, 141, 10.1542/peds.2017-3350

Barnes, 1990, Reactive oxygen species and airway inflammation, Free Radic. Biol. Med., 9, 235, 10.1016/0891-5849(90)90034-G

Orgeig, 2014

Batenburg, 1992, Surfactant phospholipids: synthesis and storage, Am. J. Physiol., 262, L367

Ponsero, 2017, Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and bip, Mol Cell, 67, 962, 10.1016/j.molcel.2017.08.012

Kotecha, 1996, Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity, J. Pediatr., 128, 464, 10.1016/S0022-3476(96)70355-4

Mizikova, 2015, The extracellular matrix in bronchopulmonary dysplasia: target and source, Front. Med., 2, 91, 10.3389/fmed.2015.00091

McGrath-Morrow, 2014, Transcriptional responses of neonatal mouse lung to hyperoxia by Nrf2 status, Cytokine, 65, 4, 10.1016/j.cyto.2013.09.021

Wagenaar, 2004, Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress, Free Radic. Biol. Med., 36, 782, 10.1016/j.freeradbiomed.2003.12.007

Lingappan, 2016, Sex-specific differences in neonatal hyperoxic lung injury, Am. J. Physiol. Lung Cell Mol. Physiol., 311, L481, 10.1152/ajplung.00047.2016

Coarfa, 2017, Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: identification of angiogenesis as a key pathway, Am. J. Physiol. Lung Cell Mol. Physiol., 313, L991, 10.1152/ajplung.00230.2017

Alvira, 2014, Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions, Birth Defects Res A Clin Mol Teratol, 100, 202, 10.1002/bdra.23233

Kazzi, 2004, Polymorphism of tumor necrosis factor-alpha and risk and severity of bronchopulmonary dysplasia among very low birth weight infants, Pediatrics, 114, e243, 10.1542/peds.114.2.e243