Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Simoni, 2002, The discovery of glutathione by F. Gowland Hopkins and the beginning of biochemistry at Cambridge University, J. Biol. Chem., 277, e13, 10.1016/S0021-9258(20)70350-9
Ames, 1990, Nature's chemicals and synthetic chemicals: comparative toxicology, Proc. Natl. Acad. Sci. U. S. A., 87, 7782, 10.1073/pnas.87.19.7782
Hayes, 2005, Glutathione transferases, Annu. Rev. Pharmacol. Toxicol., 45, 51, 10.1146/annurev.pharmtox.45.120403.095857
Frei, 2009, Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes, Nature, 461, 250, 10.1038/nature08266
Massey, 1994, Activation of molecular oxygen by flavins and flavoproteins, J. Biol. Chem., 269, 22459, 10.1016/S0021-9258(17)31664-2
Forman, 2010, Signaling functions of reactive oxygen species, Biochemistry, 49, 835, 10.1021/bi9020378
Imlay, 2003, Pathways of oxidative damage, Annu. Rev. Microbiol., 57, 395, 10.1146/annurev.micro.57.030502.090938
Imlay, 2008, Cellular defenses against superoxide and hydrogen peroxide, Annu. Rev. Biochem., 77, 755, 10.1146/annurev.biochem.77.061606.161055
Sies, 1993, Strategies of antioxidant defense, Eur. J. Biochem., 215, 213, 10.1111/j.1432-1033.1993.tb18025.x
Brigelius-Flohe, 2011, Basic principles and emerging concepts in the redox control of transcription factors, Antioxid. Redox Signal., 15, 2335, 10.1089/ars.2010.3534
Groeger, 2009, Hydrogen peroxide as a cell-survival signaling molecule, Antioxid. Redox Signal., 11, 2655, 10.1089/ars.2009.2728
Bedard, 2007, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol. Rev., 87, 245, 10.1152/physrev.00044.2005
Mieyal, 2008, Molecular mechanisms and clinical implications of reversible protein S-glutathionylation, Antioxid. Redox Signal., 10, 1941, 10.1089/ars.2008.2089
Lundin, 2010, Ribonucleotide reduction—horizontal transfer of a required function spans all three domains, BMC Evol. Biol., 10, 383, 10.1186/1471-2148-10-383
Nordlund, 2006, Ribonucleotide reductases, Annu. Rev. Biochem., 75, 681, 10.1146/annurev.biochem.75.103004.142443
Deponte, 2009, Disulphide bond formation in the intermembrane space of mitochondria, J. Biochem., 146, 599, 10.1093/jb/mvp133
Mamathambika, 2008, Disulfide-linked protein folding pathways, Annu. Rev. Cell Dev. Biol., 24, 211, 10.1146/annurev.cellbio.24.110707.175333
Riemer, 2009, Disulfide formation in the ER and mitochondria: two solutions to a common process, Science, 324, 1284, 10.1126/science.1170653
Kalapos, 1999, Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications, Toxicol. Lett., 110, 145, 10.1016/S0378-4274(99)00160-5
Richard, 1985, Reaction of triosephosphate isomerase with L-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate, Biochemistry, 24, 949, 10.1021/bi00325a021
Thornalley, 1993, The glyoxalase system in health and disease, Mol. Aspects Med., 14, 287, 10.1016/0098-2997(93)90002-U
Pompliano, 1990, Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase, Biochemistry, 29, 3186, 10.1021/bi00465a005
Thornalley, 1988, Modification of the glyoxalase system in human red blood cells by glucose in vitro, Biochem. J., 254, 751, 10.1042/bj2540751
Ronimus, 2003, Distribution and phylogenies of enzymes of the Embden–Meyerhof–Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism, Archaea, 1, 199, 10.1155/2003/162593
White, 2006, Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii, Biochemistry, 45, 12366, 10.1021/bi061018a
Cooper, 1984, Metabolism of methylglyoxal in microorganisms, Annu. Rev. Microbiol., 38, 49, 10.1146/annurev.mi.38.100184.000405
Thornalley, 2008, Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease, Drug Metabol. Drug Interact., 23, 125, 10.1515/DMDI.2008.23.1-2.125
Thornalley, 2011, Glyoxalase in tumourigenesis and multidrug resistance, Semin. Cell Dev. Biol., 22, 318, 10.1016/j.semcdb.2011.02.006
Urscher, 2011, The glyoxalase system of malaria parasites—implications for cell biology and general glyoxalase research, Semin. Cell Dev. Biol., 22, 262, 10.1016/j.semcdb.2011.02.003
Ozyamak, 2010, The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli, Mol. Microbiol., 78, 1577, 10.1111/j.1365-2958.2010.07426.x
Deponte, 2005, Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase, J. Biol. Chem., 280, 20628, 10.1074/jbc.M412519200
Karplus, 1989, Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution, J. Mol. Biol., 210, 163, 10.1016/0022-2836(89)90298-2
Schulz, 1978, The structure of the flavoenzyme glutathione reductase, Nature, 273, 120, 10.1038/273120a0
Kanzok, 2001, Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster, Science, 291, 643, 10.1126/science.291.5504.643
Kanzok, 2000, The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited, J. Biol. Chem., 275, 40180, 10.1074/jbc.M007633200
Pastrana-Mena, 2010, Glutathione reductase-null malaria parasites have normal blood stage growth but arrest during development in the mosquito, J. Biol. Chem., 285, 27045, 10.1074/jbc.M110.122275
Tan, 2010, The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae, J. Biol. Chem., 285, 6118, 10.1074/jbc.M109.062844
Muller, 1996, A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth, Mol. Biol. Cell, 7, 1805, 10.1091/mbc.7.11.1805
Buchholz, 2010, Molecular genetics evidence for the in vivo roles of the two major NADPH-dependent disulfide reductases in the malaria parasite, J. Biol. Chem., 285, 37388, 10.1074/jbc.M110.123323
Marty, 2009, The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 106, 9109, 10.1073/pnas.0900206106
Krauth-Siegel, 2005, Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia, Angew. Chem. Int. Ed Engl., 44, 690, 10.1002/anie.200300639
Schafer, 2001, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radic. Biol. Med., 30, 1191, 10.1016/S0891-5849(01)00480-4
Meyer, 2010, Fluorescent protein-based redox probes, Antioxid. Redox Signal., 13, 621, 10.1089/ars.2009.2948
Gutscher, 2008, Real-time imaging of the intracellular glutathione redox potential, Nat. Methods, 5, 553, 10.1038/nmeth.1212
Munday, 1989, Toxicity of thiols and disulphides: involvement of free-radical species, Free Radic. Biol. Med., 7, 659, 10.1016/0891-5849(89)90147-0
Meister, 1988, Glutathione metabolism and its selective modification, J. Biol. Chem., 263, 17205, 10.1016/S0021-9258(19)77815-6
L. Flohé, Fairytale of the GSH/GSSG redox equilibrium, Biochim. Biophys. Acta (this issue).
Hofmeyr, 2000, Regulating the cellular economy of supply and demand, FEBS Lett., 476, 47, 10.1016/S0014-5793(00)01668-9
Rohwer, 2010, Kinetic and thermodynamic aspects of enzyme control and regulation, J. Phys. Chem. B, 114, 16280, 10.1021/jp108412s
Lillig, 2008, Glutaredoxin systems, Biochim. Biophys. Acta, 1780, 1304, 10.1016/j.bbagen.2008.06.003
Eckers, 2009, Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux, Biochemistry, 48, 1410, 10.1021/bi801859b
Bulleid, 2011, Multiple ways to make disulfides, Trends Biochem. Sci., 36, 485, 10.1016/j.tibs.2011.05.004
Hatahet, 2009, Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation, Antioxid. Redox Signal., 11, 2807, 10.1089/ars.2009.2466
Fernandes, 2005, A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase, J. Biol. Chem., 280, 24544, 10.1074/jbc.M500678200
Johansson, 2004, Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase, J. Biol. Chem., 279, 7537, 10.1074/jbc.M312719200
Toppo, 2009, Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme, Biochim. Biophys. Acta, 1790, 1486, 10.1016/j.bbagen.2009.04.007
Flohe, 2011, A comparison of thiol peroxidase mechanisms, Antioxid. Redox Signal., 15, 763, 10.1089/ars.2010.3397
R. Brigelius-Flohé, GSH peroxidases, Biochim. Biophys. Acta (this issue).
Nickel, 2006, Thioredoxin networks in the malarial parasite Plasmodium falciparum, Antioxid. Redox Signal., 8, 1227, 10.1089/ars.2006.8.1227
Greetham, 2009, Antioxidant activity of the yeast mitochondrial one-Cys peroxiredoxin is dependent on thioredoxin reductase and glutathione in vivo, Mol. Cell. Biol., 29, 3229, 10.1128/MCB.01918-08
Manevich, 2004, Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST, Proc. Natl. Acad. Sci. U. S. A., 101, 3780, 10.1073/pnas.0400181101
Pedrajas, 2010, Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-CYS peroxiredoxin in Saccharomyces cerevisiae, Antioxid. Redox Signal., 13, 249, 10.1089/ars.2009.2950
Dietz, 2011, Peroxiredoxins in plants and cyanobacteria, Antioxid. Redox Signal., 15, 1129, 10.1089/ars.2010.3657
Collinson, 2002, The yeast glutaredoxins are active as glutathione peroxidases, J. Biol. Chem., 277, 16712, 10.1074/jbc.M111686200
Mannervik, 1988, Glutathione transferases—structure and catalytic activity, CRC Crit. Rev. Biochem., 23, 283, 10.3109/10409238809088226
Salinas, 1999, Glutathione S-transferases—a review, Curr. Med. Chem., 6, 279, 10.2174/0929867306666220208213032
Hiller, 2006, Plasmodium falciparum glutathione S-transferase—structural and mechanistic studies on ligand binding and enzyme inhibition, Protein Sci., 15, 281, 10.1110/ps.051891106
Fernando, 2006, Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells, FASEB J., 20, 2645, 10.1096/fj.06-5919fje
Vander Jagt, 1989, The glyoxalase system, Coenzmyes Cofactors, VIII, 597
Thornalley, 1990, The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life, Biochem. J., 269, 1, 10.1042/bj2690001
Bresell, 2005, Bioinformatic and enzymatic characterization of the MAPEG superfamily, FEBS J., 272, 1688, 10.1111/j.1742-4658.2005.04596.x
Martinez Molina, 2008, Catalysis within the lipid bilayer-structure and mechanism of the MAPEG family of integral membrane proteins, Curr. Opin. Struct. Biol., 18, 442, 10.1016/j.sbi.2008.04.005
Pearson, 2005, Phylogenies of glutathione transferase families, Methods Enzymol., 401, 186, 10.1016/S0076-6879(05)01012-8
Pearson, 2005, Chemical hardness and density functional theory, J. Chem. Sci., 117, 369, 10.1007/BF02708340
Giles, 2003, Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential, Org. Biomol. Chem., 1, 4317, 10.1039/b308117f
Arner, 2010, Selenoproteins—what unique properties can arise with selenocysteine in place of cysteine?, Exp. Cell Res., 316, 1296, 10.1016/j.yexcr.2010.02.032
Gromer, 2003, Active sites of thioredoxin reductases: why selenoproteins?, Proc. Natl. Acad. Sci. U. S. A., 100, 12618, 10.1073/pnas.2134510100
Khare, 1971, Synthesis of cystine in simulated primitive conditions, Nature, 232, 577, 10.1038/232577a0
Stipanuk, 2004, Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine, Annu. Rev. Nutr., 24, 539, 10.1146/annurev.nutr.24.012003.132418
Newton, 2008, Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria, Microbiol. Mol. Biol. Rev., 72, 471, 10.1128/MMBR.00008-08
Fahey, 2001, Novel thiols of prokaryotes, Annu. Rev. Microbiol., 55, 333, 10.1146/annurev.micro.55.1.333
Sundquist, 1989, The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium, J. Biol. Chem., 264, 719, 10.1016/S0021-9258(19)85002-0
Tsen, 1958, Catalytic oxidation of glutathione and other sulfhydryl compounds by selenite, J. Biol. Chem., 233, 1230, 10.1016/S0021-9258(19)77374-8
Ariyanayagam, 2001, Ovothiol and trypanothione as antioxidants in trypanosomatids, Mol. Biochem. Parasitol., 115, 189, 10.1016/S0166-6851(01)00285-7
Fairlamb, 1985, Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids, Science, 227, 1485, 10.1126/science.3883489
M. Comini, R. Radi, Trypanothiol, Biochim. Biophys. Acta (this issue).
Tabor, 1975, Isolation, characterization, and turnover of glutathionylspermidine from Escherichia coli, J. Biol. Chem., 250, 2648, 10.1016/S0021-9258(19)41651-7
Chiang, 2010, Protein S-thiolation by Glutathionylspermidine (Gsp): the role of Escherichia coli Gsp synthetASE/amidase in redox regulation, J. Biol. Chem., 285, 25345, 10.1074/jbc.M110.133363
Gaballa, 2010, Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli, Proc. Natl. Acad. Sci. U. S. A., 107, 6482, 10.1073/pnas.1000928107
Newton, 2009, Bacillithiol is an antioxidant thiol produced in Bacilli, Nat. Chem. Biol., 5, 625, 10.1038/nchembio.189
Hand, 2005, Biological chemistry of naturally occurring thiols of microbial and marine origin, J. Nat. Prod., 68, 293, 10.1021/np049685x
LeMaster, 1996, Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis, J. Am. Chem. Soc., 118, 9255, 10.1021/ja960877r
Wiita, 2007, Probing the chemistry of thioredoxin catalysis with force, Nature, 450, 124, 10.1038/nature06231
Pappas, 1977, Theoretical studies of the reactions of the sulfur-sulfur bond. 1. General heterolytic mechanisms, J. Am. Chem. Soc., 99, 2926, 10.1021/ja00451a013
Rosenfield, 1977, Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles, J. Am. Chem. Soc., 99, 4860, 10.1021/ja00456a072
Aida, 1984, An ab initio MO study on the thiol–disulfide exchange reaction, Chem. Phys. Lett., 112, 129, 10.1016/0009-2614(84)85006-X
Kice, 1967, Mechanisms of reactions of thiolsulfinates ( sulfenic anhydrides). I. The thiolsulfinate-sulfinic acid reaction, J. Am. Chem. Soc., 89, 3557, 10.1021/ja00990a037
Bachrach, 1996, Nucleophilic substitution at sulfur: SN2 or addition–elimination?, J. Phys. Chem., 100, 3535, 10.1021/jp953335p
Racker, 1955, Glutathione reductase from bakers' yeast and beef liver, J. Biol. Chem., 217, 855, 10.1016/S0021-9258(18)65950-2
Massey, 1965, On the reaction mechanism of yeast glutathione reductase, J. Biol. Chem., 240, 4470, 10.1016/S0021-9258(18)97085-7
Thieme, 1981, Three-dimensional structure of glutathione reductase at 2 A resolution, J. Mol. Biol., 152, 763, 10.1016/0022-2836(81)90126-1
Williams, 2000, Thioredoxin reductase two modes of catalysis have evolved, Eur. J. Biochem., 267, 6110, 10.1046/j.1432-1327.2000.01702.x
Pai, 1983, The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates, J. Biol. Chem., 258, 1752, 10.1016/S0021-9258(18)33050-3
Mittl, 1994, Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes, Protein Sci., 3, 799, 10.1002/pro.5560030509
Sarma, 2003, Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development, J. Mol. Biol., 328, 893, 10.1016/S0022-2836(03)00347-4
Yu, 2007, Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae, Proteins, 68, 972, 10.1002/prot.21354
Karplus, 1987, Refined structure of glutathione reductase at 1.54 A resolution, J. Mol. Biol., 195, 701, 10.1016/0022-2836(87)90191-4
Schulz, 1980, Gene duplication in glutathione reductase, J. Mol. Biol., 138, 335, 10.1016/0022-2836(80)90290-9
Savvides, 1996, Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor, J. Biol. Chem., 271, 8101, 10.1074/jbc.271.14.8101
Outten, 2004, Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase, J. Biol. Chem., 279, 7785, 10.1074/jbc.M312421200
Mbemba, 1985, Subcellular localization and modification with ageing of glutathione, glutathione peroxidase and glutathione reductase activities in human fibroblasts, Biochim. Biophys. Acta, 838, 211, 10.1016/0304-4165(85)90081-9
Taniguchi, 1986, Similarities between rat liver mitochondrial and cytosolic glutathione reductases and their apoenzyme accumulation in riboflavin deficiency, Biochem. Int., 13, 447
Creissen, 1995, Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco, Plant J., 8, 167, 10.1046/j.1365-313X.1995.08020167.x
Kehr, 2010, Compartmentation of redox metabolism in malaria parasites, PLoS Pathog., 6, e1001242, 10.1371/journal.ppat.1001242
Kelner, 2000, Structural organization of the human glutathione reductase gene: determination of correct cDNA sequence and identification of a mitochondrial leader sequence, Biochem. Biophys. Res. Commun., 269, 366, 10.1006/bbrc.2000.2267
Tamura, 1996, Mitochondrial targeting of glutathione reductase requires a leader sequence, Biochem. Biophys. Res. Commun., 222, 659, 10.1006/bbrc.1996.0800
Krauth-Siegel, 1998, Role of active site tyrosine residues in catalysis by human glutathione reductase, Biochemistry, 37, 13968, 10.1021/bi980637j
Berry, 1989, Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase, Biochemistry, 28, 1264, 10.1021/bi00429a047
Huber, 1980, Kinetic studies of the mechanism of pyridine nucleotide dependent reduction of yeast glutathione reductase, Biochemistry, 19, 4569, 10.1021/bi00561a005
Arscott, 1981, Glutathione reductase from yeast. Differential reactivity of the nascent thiols in two-electron reduced enzyme and properties of a monoalkylated derivative, Biochemistry, 20, 1513, 10.1021/bi00509a016
Rietveld, 1994, Reductive and oxidative half-reactions of glutathione reductase from Escherichia coli, Biochemistry, 33, 13888, 10.1021/bi00250a043
Veine, 1998, Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis, Biochemistry, 37, 15575, 10.1021/bi9811314
Bulger, 1971, Yeast glutathione reductase. II. Interaction of oxidized and 2-electron reduced enzyme with reduced and oxidized nicotinamide adenine dinucleotide phosphate, J. Biol. Chem., 246, 5578, 10.1016/S0021-9258(18)61848-4
Wong, 1989, Human erythrocyte glutathione reductase: pH dependence of kinetic parameters, Biochemistry, 28, 3586, 10.1021/bi00434a065
Wong, 1988, Glutathione reductase: solvent equilibrium and kinetic isotope effects, Biochemistry, 27, 7091, 10.1021/bi00418a063
Deonarain, 1989, Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of histidine-439 and tyrosine-99, Biochemistry, 28, 9602, 10.1021/bi00451a008
Arscott, 2000, Mixed disulfide with glutathione as an intermediate in the reaction catalyzed by glutathione reductase from yeast and as a major form of the enzyme in the cell, Biochemistry, 39, 4711, 10.1021/bi9926431
Canepa, 1991, Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes, Biochim. Biophys. Acta, 1074, 101, 10.1016/0304-4165(91)90046-J
Bohme, 2000, Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme, J. Biol. Chem., 275, 37317, 10.1074/jbc.M007695200
Vanoni, 1990, Glutathione reductase: comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes, Biochemistry, 29, 5790, 10.1021/bi00476a021
Serrano, 1984, Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119, J. Bacteriol., 158, 317, 10.1128/JB.158.1.317-324.1984
Boggaram, 1978, Characterization of glutathione reductase from porcine erythrocytes, Biochim. Biophys. Acta, 527, 337, 10.1016/0005-2744(78)90348-0
Farber, 1998, Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue, FEBS Lett., 422, 311, 10.1016/S0014-5793(98)00031-3
Berkholz, 2008, Catalytic cycle of human glutathione reductase near 1 A resolution, J. Mol. Biol., 382, 371, 10.1016/j.jmb.2008.06.083
Leichert, 2008, Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. U. S. A., 105, 8197, 10.1073/pnas.0707723105
Kumsta, 2011, Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans, Antioxid. Redox Signal., 14, 1023, 10.1089/ars.2010.3203
Brandes, 2011, Using quantitative redox proteomics to dissect the yeast redoxome, J. Biol. Chem., 286, 41893, 10.1074/jbc.M111.296236
Deonarain, 1992, Engineering surface charge. 2. A method for purifying heterodimers of Escherichia coli glutathione reductase, Biochemistry, 31, 1498, 10.1021/bi00120a029
Mannervik, 1973, A branching reaction mechanism of glutathione reductase, Biochem. Biophys. Res. Commun., 53, 1151, 10.1016/0006-291X(73)90585-8
Staal, 1969, The reaction mechanism of glutathione reductase from human erythrocytes, Biochim. Biophys. Acta, 185, 49, 10.1016/0005-2744(69)90281-2
Scrutton, 1992, Cooperativity induced by a single mutation at the subunit interface of a dimeric enzyme: glutathione reductase, Science, 258, 1140, 10.1126/science.1439821
Bashir, 1995, Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase, Biochem. J., 312, 527, 10.1042/bj3120527
Grant, 1996, Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation, Mol. Microbiol., 21, 171, 10.1046/j.1365-2958.1996.6351340.x
Outten, 2005, Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae, Biochem. J., 388, 93, 10.1042/BJ20041914
Tuggle, 1985, Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12, J. Bacteriol., 162, 448, 10.1128/JB.162.1.448-450.1985
Patzewitz, 2012, Dissecting the role of glutathione biosynthesis in Plasmodium falciparum, Mol. Microbiol., 83, 304, 10.1111/j.1365-2958.2011.07933.x
Tzafrir, 2004, Identification of genes required for embryo development in Arabidopsis, Plant Physiol., 135, 1206, 10.1104/pp.104.045179
Satoh, 2010, Expression of glutathione reductase splice variants in human tissues, Biochem. Genet., 48, 816, 10.1007/s10528-010-9362-z
O'Donovan, 2000, Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase, Am. J. Respir. Cell Mol. Biol., 22, 732, 10.1165/ajrcmb.22.6.3836
Heyob, 2008, Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury, Am. J. Respir. Cell Mol. Biol., 39, 683, 10.1165/rcmb.2008-0112OC
Benohr, 1975, Glutathione (author's transl), Klin. Wochenschr., 53, 789
Loos, 1976, Familial deficiency of glutathione reductase in human blood cells, Blood, 48, 53, 10.1182/blood.V48.1.53.53
Nakashima, 1978, Glutathione reductase deficiency in a kindred with hereditary spherocytosis, Am. J. Hematol., 4, 141, 10.1002/ajh.2830040206
Kamerbeek, 2007, Molecular basis of glutathione reductase deficiency in human blood cells, Blood, 109, 3560, 10.1182/blood-2006-08-042531
Bauer, 2006, A fluoro analogue of the menadione derivative 6-[2′-(3′-methyl)-1′,4′-naphthoquinolyl]hexanoic acid is a suicide substrate of glutathione reductase. Crystal structure of the alkylated human enzyme, J. Am. Chem. Soc., 128, 10784, 10.1021/ja061155v
Muller, 2011, Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones—a new strategy to combat malarial parasites, J. Am. Chem. Soc., 133, 11557, 10.1021/ja201729z
Buchholz, 2008, Interactions of methylene blue with human disulfide reductases and their orthologues from Plasmodium falciparum, Antimicrob. Agents Chemother., 52, 183, 10.1128/AAC.00773-07
Zoungrana, 2008, Safety and efficacy of methylene blue combined with artesunate or amodiaquine for uncomplicated falciparum malaria: a randomized controlled trial from Burkina Faso, PLoS One, 3, e1630, 10.1371/journal.pone.0001630
Bountogo, 2010, Efficacy of methylene blue monotherapy in semi-immune adults with uncomplicated falciparum malaria: a controlled trial in Burkina Faso, Trop. Med. Int. Health, 15, 713, 10.1111/j.1365-3156.2010.02526.x
Bonilla, 2011, Linked thioredoxin–glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation, J. Biol. Chem., 286, 4959, 10.1074/jbc.M110.170761
Racker, 1955, Glutathione–homocystine transhydrogenase, J. Biol. Chem., 217, 867, 10.1016/S0021-9258(18)65951-4
Narahara, 1959, Reduction of insulin by extracts of rat liver, J. Biol. Chem., 234, 71, 10.1016/S0021-9258(18)70337-2
Tomizawa, 1965, Glutathione-insulin transhydrogenase of human liver, J. Biol. Chem., 240, 3191, 10.1016/S0021-9258(18)97306-0
Katzen, 1966, Studies on the specificity and mechanism of action of hepatic glutathione-insulin transhydrogenase, J. Biol. Chem., 241, 3561, 10.1016/S0021-9258(18)99867-4
Freedman, 1979, How many distinct enzymes are responsible for the several cellular processes involving thiol:protein-disulphide interchange?, FEBS Lett., 97, 201, 10.1016/0014-5793(79)80085-X
Holmgren, 1979, Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide, J. Biol. Chem., 254, 9627, 10.1016/S0021-9258(19)83562-7
Nagai, 1968, A thiol–disulfide transhydrogenase from yeast, J. Biol. Chem., 243, 1942, 10.1016/S0021-9258(18)93532-5
Mesecke, 2008, Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron–sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins, Biochemistry, 47, 1452, 10.1021/bi7017865
Askelof, 1974, Mechanism of action of enzymes catalyzing thiol–disulfide interchange. Thioltransferases rather than transhydrogenases, FEBS Lett., 38, 263, 10.1016/0014-5793(74)80068-2
Axelsson, 1978, Purification and characterization of cytoplasmic thioltransferase (glutathione:disulfide oxidoreductase) from rat liver, Biochemistry, 17, 2978, 10.1021/bi00608a006
Luthman, 1979, Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase, Proc. Natl. Acad. Sci. U. S. A., 76, 2158, 10.1073/pnas.76.5.2158
Luthman, 1982, Glutaredoxin from calf thymus. Purification to homogeneity, J. Biol. Chem., 257, 6686, 10.1016/S0021-9258(18)34484-3
Gan, 1986, Purification and properties of thioltransferase, J. Biol. Chem., 261, 996, 10.1016/S0021-9258(17)36043-X
Gan, 1987, Preparation of homogeneous pig liver thioltransferase by a thiol:disulfide mediated pI shift, Anal. Biochem., 162, 265, 10.1016/0003-2697(87)90036-4
Gan, 1987, The primary structure of pig liver thioltransferase, J. Biol. Chem., 262, 6699, 10.1016/S0021-9258(18)48298-1
Yang, 1989, Cloning and sequencing the cDNA encoding pig liver thioltransferase, Gene, 83, 339, 10.1016/0378-1119(89)90120-0
Katti, 1995, Crystal structure of thioltransferase at 2.2 A resolution, Protein Sci., 4, 1998, 10.1002/pro.5560041005
Yang, 1998, Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity, Biochemistry, 37, 17145, 10.1021/bi9806504
Holmgren, 1976, Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione, Proc. Natl. Acad. Sci. U. S. A., 73, 2275, 10.1073/pnas.73.7.2275
Holmgren, 1979, Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli, J. Biol. Chem., 254, 3664, 10.1016/S0021-9258(18)50813-9
Holmgren, 1979, Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin, J. Biol. Chem., 254, 3672, 10.1016/S0021-9258(18)50814-0
Hoog, 1983, The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol, Eur. J. Biochem., 136, 223, 10.1111/j.1432-1033.1983.tb07730.x
Hoog, 1986, Cloning and expression of the glutaredoxin (grx) gene of Escherichia coli, Gene, 43, 13, 10.1016/0378-1119(86)90003-X
Sandberg, 1991, Escherichia coli glutaredoxin: cloning and overexpression, thermodynamic stability of the oxidized and reduced forms, and report of an N-terminal extended species, Biochemistry, 30, 5475, 10.1021/bi00236a021
Xia, 1992, NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins, Protein Sci., 1, 310, 10.1002/pro.5560010302
Bushweller, 1994, The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin(C14S) and glutathione, J. Mol. Biol., 235, 1585, 10.1006/jmbi.1994.1108
Muhlenhoff, 2010, Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron–sulfur cluster, Cell Metab., 12, 373, 10.1016/j.cmet.2010.08.001
Rouhier, 2008, The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation, Annu. Rev. Plant Biol., 59, 143, 10.1146/annurev.arplant.59.032607.092811
Herrero, 2007, Monothiol glutaredoxins: a common domain for multiple functions, Cell. Mol. Life Sci., 64, 1518, 10.1007/s00018-007-6554-8
Mesecke, 2008, A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance, Mol. Biol. Cell, 19, 2673, 10.1091/mbc.E07-09-0896
Izquierdo, 2008, Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway, Eukaryot. Cell, 7, 1415, 10.1128/EC.00133-08
Hoffmann, 2011, The multidomain thioredoxin-monothiol glutaredoxins represent a distinct functional group, Antioxid. Redox Signal., 15, 19, 10.1089/ars.2010.3811
Bushweller, 1992, Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14–S) and its mixed disulfide with glutathione, Biochemistry, 31, 9288, 10.1021/bi00153a023
Johansson, 2007, Reversible sequestration of active site cysteines in a 2Fe–2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria, J. Biol. Chem., 282, 3077, 10.1074/jbc.M608179200
Fladvad, 2005, Molecular mapping of functionalities in the solution structure of reduced Grx4, a monothiol glutaredoxin from Escherichia coli, J. Biol. Chem., 280, 24553, 10.1074/jbc.M500679200
Alves, 2009, Evolution based on domain combinations: the case of glutaredoxins, BMC Evol. Biol., 9, 66, 10.1186/1471-2148-9-66
Maiorino, 2007, The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases, J. Mol. Biol., 365, 1033, 10.1016/j.jmb.2006.10.033
Yu, 2008, Glutathionylation-triggered conformational changes of glutaredoxin Grx1 from the yeast Saccharomyces cerevisiae, Proteins, 72, 1077, 10.1002/prot.22096
Li, 2010, Structural basis for the different activities of yeast Grx1 and Grx2, Biochim. Biophys. Acta, 1804, 1542, 10.1016/j.bbapap.2010.04.010
Couturier, 2009, Structure–function relationship of the chloroplastic glutaredoxin S12 with an atypical WCSYS active site, J. Biol. Chem., 284, 9299, 10.1074/jbc.M807998200
Deponte, 2005, Plasmodium falciparum glutaredoxin-like proteins, Biol. Chem., 386, 33, 10.1515/BC.2005.005
Iwema, 2009, Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin, Biochemistry, 48, 6041, 10.1021/bi900440m
Johansson, 2011, The crystal structure of human GLRX5: iron–sulfur cluster co-ordination, tetrameric assembly and monomer activity, Biochem. J., 433, 303, 10.1042/BJ20101286
Rodriguez-Manzaneque, 2002, Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes, Mol. Biol. Cell, 13, 1109, 10.1091/mbc.01-10-0517
Berardi, 1999, Binding specificity and mechanistic insight into glutaredoxin-catalyzed protein disulfide reduction, J. Mol. Biol., 292, 151, 10.1006/jmbi.1999.3067
Nordstrand, 2000, NMR structure of oxidized glutaredoxin 3 from Escherichia coli, J. Mol. Biol., 303, 423, 10.1006/jmbi.2000.4145
Bacik, 2007, Crystal structures of a poxviral glutaredoxin in the oxidized and reduced states show redox-correlated structural changes, J. Mol. Biol., 365, 1545, 10.1016/j.jmb.2006.11.002
Discola, 2009, Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae, J. Mol. Biol., 385, 889, 10.1016/j.jmb.2008.10.055
Luo, 2010, Structural and biochemical characterization of yeast monothiol glutaredoxin Grx6, J. Mol. Biol., 398, 614, 10.1016/j.jmb.2010.03.029
Comini, 2008, Monothiol glutaredoxin-1 is an essential iron–sulfur protein in the mitochondrion of African trypanosomes, J. Biol. Chem., 283, 27785, 10.1074/jbc.M802010200
Noguera, 2005, NMR reveals a novel glutaredoxin–glutaredoxin interaction interface, J. Mol. Biol., 353, 629, 10.1016/j.jmb.2005.08.035
Kelley, 1997, Comparison of backbone dynamics of reduced and oxidized Escherichia coli glutaredoxin-1 using 15N NMR relaxation measurements, Biochemistry, 36, 5029, 10.1021/bi962181g
Grant, 2001, Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions, Mol. Microbiol., 39, 533, 10.1046/j.1365-2958.2001.02283.x
Song, 2003, Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1, Biochem. J., 373, 845, 10.1042/bj20030275
Gon, 2006, In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli, Antioxid. Redox Signal., 8, 735, 10.1089/ars.2006.8.735
Shi, 1999, Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction, J. Biol. Chem., 274, 36039, 10.1074/jbc.274.51.36039
Zahedi Avval, 2009, Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian S phase ribonucleotide reductase, J. Biol. Chem., 284, 8233, 10.1074/jbc.M809338200
Brautigam, 2011, Vertebrate-specific glutaredoxin is essential for brain development, Proc. Natl. Acad. Sci. U. S. A., 108, 20532, 10.1073/pnas.1110085108
Luikenhuis, 1998, The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species, Mol. Biol. Cell, 9, 1081, 10.1091/mbc.9.5.1081
Wolfe, 1997, Molecular evidence for an ancient duplication of the entire yeast genome, Nature, 387, 708, 10.1038/42711
Pedrajas, 2002, Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments, Biochem. J., 364, 617, 10.1042/bj20020570
Huh, 2003, Global analysis of protein localization in budding yeast, Nature, 425, 686, 10.1038/nature02026
Porras, 2010, Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution, Biochim. Biophys. Acta, 1804, 839, 10.1016/j.bbapap.2009.12.012
Porras, 2006, One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae, J. Biol. Chem., 281, 16551, 10.1074/jbc.M600790200
Ghaemmaghami, 2003, Global analysis of protein expression in yeast, Nature, 425, 737, 10.1038/nature02046
Camier, 2007, Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast, Free Radic. Biol. Med., 42, 1008, 10.1016/j.freeradbiomed.2006.12.027
Collinson, 2003, Role of yeast glutaredoxins as glutathione S-transferases, J. Biol. Chem., 278, 22492, 10.1074/jbc.M301387200
Molina, 2004, Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins, J. Biol. Chem., 279, 51923, 10.1074/jbc.M410219200
Lopreiato, 2004, Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin, Biochem. J., 377, 395, 10.1042/bj20030638
Rodriguez-Manzaneque, 1999, Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae, Mol. Cell. Biol., 19, 8180, 10.1128/MCB.19.12.8180
Tamarit, 2003, Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin, J. Biol. Chem., 278, 25745, 10.1074/jbc.M303477200
Shenton, 2002, Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae, J. Biol. Chem., 277, 16853, 10.1074/jbc.M200559200
Wingert, 2005, Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis, Nature, 436, 1035, 10.1038/nature03887
Bandyopadhyay, 2008, Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe–2S] clusters, EMBO J., 27, 1122, 10.1038/emboj.2008.50
Kim, 2010, Monothiol glutaredoxin Grx5 interacts with Fe–S scaffold proteins Isa1 and Isa2 and supports Fe–S assembly and DNA integrity in mitochondria of fission yeast, Biochem. Biophys. Res. Commun., 392, 467, 10.1016/j.bbrc.2010.01.051
Pujol-Carrion, 2006, Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae, J. Cell Sci., 119, 4554, 10.1242/jcs.03229
Ojeda, 2006, Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae, J. Biol. Chem., 281, 17661, 10.1074/jbc.M602165200
Mercier, 2009, Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1, J. Biol. Chem., 284, 20249, 10.1074/jbc.M109.009563
Peggion, 2008, Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily, FEBS J., 275, 5919, 10.1111/j.1742-4658.2008.06721.x
Witte, 2000, Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain, J. Biol. Chem., 275, 1902, 10.1074/jbc.275.3.1902
Vlamis-Gardikas, 1997, Cloning, overexpression, and characterization of glutaredoxin 2, an atypical glutaredoxin from Escherichia coli, J. Biol. Chem., 272, 11236, 10.1074/jbc.272.17.11236
Aslund, 1994, Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant, Proc. Natl. Acad. Sci. U. S. A., 91, 9813, 10.1073/pnas.91.21.9813
Berndt, 2007, How does iron–sulfur cluster coordination regulate the activity of human glutaredoxin 2?, Antioxid. Redox Signal., 9, 151, 10.1089/ars.2007.9.151
Gallogly, 2008, Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles, Biochemistry, 47, 11144, 10.1021/bi800966v
Hopper, 1989, Glutaredoxin from rabbit bone marrow. Purification, characterization, and amino acid sequence determined by tandem mass spectrometry, J. Biol. Chem., 264, 20438, 10.1016/S0021-9258(19)47081-6
Lundberg, 2001, Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms, J. Biol. Chem., 276, 26269, 10.1074/jbc.M011605200
Mieyal, 1991, Thioltransferase in human red blood cells: kinetics and equilibrium, Biochemistry, 30, 8883, 10.1021/bi00100a023
Rahlfs, 2001, Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain, J. Biol. Chem., 276, 37133, 10.1074/jbc.M105524200
Rouhier, 2002, Exploring the active site of plant glutaredoxin by site-directed mutagenesis, FEBS Lett., 511, 145, 10.1016/S0014-5793(01)03302-6
Sha, 1997, Purification and characterization of glutaredoxin (thioltransferase) from rice (Oryza sativa L.), J. Biochem., 121, 842, 10.1093/oxfordjournals.jbchem.a021663
Zaffagnini, 2008, Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii reveals the unique properties of a chloroplastic CGFS-type glutaredoxin, J. Biol. Chem., 283, 8868, 10.1074/jbc.M709567200
Filser, 2008, Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1, Biol. Chem., 389, 21, 10.1515/BC.2007.147
Gao, 2010, Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: kinetics and specificity in deglutathionylation reactions, FEBS Lett., 584, 2242, 10.1016/j.febslet.2010.04.034
Gravina, 1993, Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase, Biochemistry, 32, 3368, 10.1021/bi00064a021
Yang, 1991, Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis, J. Biol. Chem., 266, 12759, 10.1016/S0021-9258(18)98964-7
Yang, 1991, Catalytic mechanism of thioltransferase, J. Biol. Chem., 266, 12766, 10.1016/S0021-9258(18)98965-9
Srinivasan, 1997, pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis, Biochemistry, 36, 3199, 10.1021/bi962017t
Zaffagnini, 2012, Glutaredoxin s12: unique properties for redox signaling, Antioxid. Redox Signal., 16, 17, 10.1089/ars.2011.3933
Peltoniemi, 2006, Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione, J. Biol. Chem., 281, 33107, 10.1074/jbc.M605602200
Aslund, 1997, Redox potentials of glutaredoxins and other thiol–disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein–protein redox equilibria, J. Biol. Chem., 272, 30780, 10.1074/jbc.272.49.30780
Caccuri, 2002, GSTB1-1 from Proteus mirabilis: a snapshot of an enzyme in the evolutionary pathway from a redox enzyme to a conjugating enzyme, J. Biol. Chem., 277, 18777, 10.1074/jbc.M201137200
Ho, 2007, Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia, Free Radic. Biol. Med., 43, 1299, 10.1016/j.freeradbiomed.2007.07.025
Godoy, 2011, Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse, Biochim. Biophys. Acta, 1810, 2, 10.1016/j.bbagen.2010.05.006
Yoshitake, 1994, Possible differences in the regenerative roles played by thioltransferase and thioredoxin for oxidatively damaged proteins, J. Biochem., 116, 42, 10.1093/oxfordjournals.jbchem.a124500
Mohr, 1999, Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem., 274, 9427, 10.1074/jbc.274.14.9427
Reddy, 2000, Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue, Biochem. J., 347, 821, 10.1042/0264-6021:3470821
Cabiscol, 1996, The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation, Proc. Natl. Acad. Sci. U. S. A., 93, 4170, 10.1073/pnas.93.9.4170
Chen, 2007, Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation, J. Biol. Chem., 282, 32640, 10.1074/jbc.M702294200
Taylor, 2003, Reversible glutathionylation of complex I increases mitochondrial superoxide formation, J. Biol. Chem., 278, 19603, 10.1074/jbc.M209359200
Wang, 2001, Reversible glutathionylation regulates actin polymerization in A431 cells, J. Biol. Chem., 276, 47763, 10.1074/jbc.C100415200
Wang, 2003, Stable and controllable RNA interference: investigating the physiological function of glutathionylated actin, Proc. Natl. Acad. Sci. U. S. A., 100, 5103, 10.1073/pnas.0931345100
Adachi, 2004, S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide, Nat. Med., 10, 1200, 10.1038/nm1119
Anathy, 2009, Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas, J. Cell Biol., 184, 241, 10.1083/jcb.200807019
Aracena-Parks, 2006, Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1, J. Biol. Chem., 281, 40354, 10.1074/jbc.M600876200
Queiroga, 2010, Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis, J. Biol. Chem., 285, 17077, 10.1074/jbc.M109.065052
Yang, 2010, Oxidative stress inhibits vascular K(ATP) channels by S-glutathionylation, J. Biol. Chem., 285, 38641, 10.1074/jbc.M110.162578
Barrett, 1999, Regulation of PTP1B via glutathionylation of the active site cysteine 215, Biochemistry, 38, 6699, 10.1021/bi990240v
Humphries, 2002, Regulation of cAMP-dependent protein kinase activity by glutathionylation, J. Biol. Chem., 277, 43505, 10.1074/jbc.M207088200
Kambe, 2010, Inactivation of Ca2+/calmodulin-dependent protein kinase I by S-glutathionylation of the active-site cysteine residue, FEBS Lett., 584, 2478, 10.1016/j.febslet.2010.04.059
Rao, 2002, Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation, Biochem. Biophys. Res. Commun., 293, 610, 10.1016/S0006-291X(02)00268-1
Reynaert, 2006, Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta, Proc. Natl. Acad. Sci. U. S. A., 103, 13086, 10.1073/pnas.0603290103
Ward, 2000, Oxidant-induced S-glutathiolation inactivates protein kinase C-alpha (PKC-alpha): a potential mechanism of PKC isozyme regulation, Biochemistry, 39, 10319, 10.1021/bi000781g
Bandyopadhyay, 1998, Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I, J. Biol. Chem., 273, 392, 10.1074/jbc.273.1.392
Adachi, 2004, S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells, J. Biol. Chem., 279, 29857, 10.1074/jbc.M313320200
Pineda-Molina, 2001, Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding, Biochemistry, 40, 14134, 10.1021/bi011459o
Qanungo, 2007, Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB, J. Biol. Chem., 282, 18427, 10.1074/jbc.M610934200
Dietz, 2008, Redox signal integration: from stimulus to networks and genes, Physiol. Plant., 133, 459, 10.1111/j.1399-3054.2008.01120.x
Sturm, 2009, Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum, PLoS Pathog., 5, e1000383, 10.1371/journal.ppat.1000383
Mills, 1957, Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown, J. Biol. Chem., 229, 189, 10.1016/S0021-9258(18)70608-X
Neubert, 1962, Purification and enzymatic identity of mitochondrial contraction-factors I and II, Proc. Natl. Acad. Sci. U. S. A., 48, 1651, 10.1073/pnas.48.9.1651
Flohe, 1972, Glutathione peroxidase, V, The kinetic mechanism, Hoppe Seylers Z. Physiol. Chem., 353, 987, 10.1515/bchm2.1972.353.1.987
Gunzler, 1972, Glutathione peroxidase VI: the reaction of glutahione peroxidase with various hydroperoxides, Hoppe Seylers Z. Physiol. Chem., 353, 1001
Flohe, 1973, Glutathione peroxidase: a selenoenzyme, FEBS Lett., 32, 132, 10.1016/0014-5793(73)80755-0
Ladenstein, 1979, Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2.8 A resolution, J. Mol. Biol., 134, 199, 10.1016/0022-2836(79)90032-9
Epp, 1983, The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution, Eur. J. Biochem., 133, 51, 10.1111/j.1432-1033.1983.tb07429.x
Forstrom, 1978, Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine, Biochemistry, 17, 2639, 10.1021/bi00606a028
Gunzler, 1984, The amino-acid sequence of bovine glutathione peroxidase, Hoppe Seylers Z. Physiol. Chem., 365, 195, 10.1515/bchm2.1984.365.1.195
Chambers, 1986, The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA, EMBO J., 5, 1221, 10.1002/j.1460-2075.1986.tb04350.x
Ursini, 1982, Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides, Biochim. Biophys. Acta, 710, 197, 10.1016/0005-2760(82)90150-3
Ursini, 1985, The selenoenzyme phospholipid hydroperoxide glutathione peroxidase, Biochim. Biophys. Acta, 839, 62, 10.1016/0304-4165(85)90182-5
Rocher, 1992, Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase, Eur. J. Biochem., 205, 955, 10.1111/j.1432-1033.1992.tb16862.x
Toppo, 2008, Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily, Antioxid. Redox Signal., 10, 1501, 10.1089/ars.2008.2057
Sztajer, 2001, The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase, J. Biol. Chem., 276, 7397, 10.1074/jbc.M008631200
Tanaka, 2005, GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae, J. Biol. Chem., 280, 42078, 10.1074/jbc.M508622200
Schlecker, 2007, Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei, Biochem. J., 405, 445, 10.1042/BJ20070259
Jung, 2002, A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase, J. Biol. Chem., 277, 12572, 10.1074/jbc.M110791200
Koh, 2007, Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: insights into redox-driven conformational changes, J. Mol. Biol., 370, 512, 10.1016/j.jmb.2007.04.031
Scheerer, 2007, Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4), Biochemistry, 46, 9041, 10.1021/bi700840d
Melchers, 2008, Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase, J. Biol. Chem., 283, 30401, 10.1074/jbc.M803563200
Chu, 1993, Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI, J. Biol. Chem., 268, 2571, 10.1016/S0021-9258(18)53812-6
Takahashi, 1987, Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme, Arch. Biochem. Biophys., 256, 677, 10.1016/0003-9861(87)90624-2
Ursini, 1999, Dual function of the selenoprotein PHGPx during sperm maturation, Science, 285, 1393, 10.1126/science.285.5432.1393
Navrot, 2006, Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses, Plant Physiol., 142, 1364, 10.1104/pp.106.089458
Schlecker, 2005, Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei, J. Biol. Chem., 280, 14385, 10.1074/jbc.M413338200
Esworthy, 2001, Mice with combined disruption of Gpx1 and Gpx2 genes have colitis, Am. J. Physiol. Gastrointest. Liver Physiol., 281, G848, 10.1152/ajpgi.2001.281.3.G848
Lei, 2001, Glutathione peroxidase-1 gene knockout on body antioxidant defense in mice, Biofactors, 14, 93, 10.1002/biof.5520140113
Esworthy, 1998, Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine, Biochim. Biophys. Acta, 1381, 213, 10.1016/S0304-4165(98)00032-4
Yant, 2003, The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults, Free Radic. Biol. Med., 34, 496, 10.1016/S0891-5849(02)01360-6
Maiorino, 2003, Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants, J. Biol. Chem., 278, 34286, 10.1074/jbc.M305327200
Pushpa-Rekha, 1995, Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites, J. Biol. Chem., 270, 26993, 10.1074/jbc.270.45.26993
Herrmann, 2005, Chopped, trapped or tacked—protein translocation into the IMS of mitochondria, Trends Biochem. Sci., 30, 205, 10.1016/j.tibs.2005.02.005
Godeas, 1994, Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria, Biochim. Biophys. Acta, 1191, 147, 10.1016/0005-2736(94)90242-9
Arai, 1996, Import into mitochondria of phospholipid hydroperoxide glutathione peroxidase requires a leader sequence, Biochem. Biophys. Res. Commun., 227, 433, 10.1006/bbrc.1996.1525
Schneider, 2009, Mitochondrial glutathione peroxidase 4 disruption causes male infertility, FASEB J., 23, 3233, 10.1096/fj.09-132795
Imai, 2009, Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice, J. Biol. Chem., 284, 32522, 10.1074/jbc.M109.016139
Nomura, 2000, Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis, Biochem. J., 351, 183, 10.1042/0264-6021:3510183
Godeas, 1996, Phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis nuclei is bound to chromatin, Biochem. Mol. Med., 59, 118, 10.1006/bmme.1996.0076
Moreno, 2003, Testis-specific expression of the nuclear form of phospholipid hydroperoxide glutathione peroxidase (PHGPx), Biol. Chem., 384, 635, 10.1515/BC.2003.070
Conrad, 2005, The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability, Mol. Cell. Biol., 25, 7637, 10.1128/MCB.25.17.7637-7644.2005
Liang, 2009, Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions, J. Biol. Chem., 284, 30836, 10.1074/jbc.M109.032839
Seiler, 2008, Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death, Cell Metab., 8, 237, 10.1016/j.cmet.2008.07.005
Ran, 2004, Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis, J. Biol. Chem., 279, 55137, 10.1074/jbc.M410387200
Chae, 1994, Thioredoxin-dependent peroxide reductase from yeast, J. Biol. Chem., 269, 27670, 10.1016/S0021-9258(18)47038-X
Rhee, 2005, Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling, Free Radic. Biol. Med., 38, 1543, 10.1016/j.freeradbiomed.2005.02.026
Deponte, 2007, Peroxiredoxin systems of protozoal parasites, Subcell. Biochem., 44, 219, 10.1007/978-1-4020-6051-9_10
Poole, 2007, The catalytic mechanism of peroxiredoxins, Subcell. Biochem., 44, 61, 10.1007/978-1-4020-6051-9_4
Karplus, 2007, Structural survey of the peroxiredoxins, Subcell. Biochem., 44, 41, 10.1007/978-1-4020-6051-9_3
Knoops, 2007, Evolution of the peroxiredoxins, Subcell. Biochem., 44, 27, 10.1007/978-1-4020-6051-9_2
Deponte, 2005, Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx, Mol. Biochem. Parasitol., 140, 87, 10.1016/j.molbiopara.2004.12.008
Rouhier, 2002, Glutaredoxin-dependent peroxiredoxin from poplar: protein–protein interaction and catalytic mechanism, J. Biol. Chem., 277, 13609, 10.1074/jbc.M111489200
Pauwels, 2003, Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity, J. Biol. Chem., 278, 16658, 10.1074/jbc.M300157200
Reeves, 2011, Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin, Biochemistry, 50, 8970, 10.1021/bi200935d
Richard, 2011, A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum, J. Biol. Chem., 286, 11746, 10.1074/jbc.M110.198499
Schremmer, 2007, Peroxiredoxins in the lung with emphasis on peroxiredoxin VI, Subcell. Biochem., 44, 317, 10.1007/978-1-4020-6051-9_15
Ralat, 2006, Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes, Biochemistry, 45, 360, 10.1021/bi0520737
Fisher, 1999, Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase, J. Biol. Chem., 274, 21326, 10.1074/jbc.274.30.21326
Choi, 1998, Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution, Nat. Struct. Biol., 5, 400, 10.1038/nsb0598-400
Kim, 2003, The tetrameric structure of Haemophilus influenza hybrid Prx5 reveals interactions between electron donor and acceptor proteins, J. Biol. Chem., 278, 10790, 10.1074/jbc.M209553200
Noguera-Mazon, 2006, Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer, J. Biol. Chem., 281, 31736, 10.1074/jbc.M602188200
Castro, 2011, Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: insight into its novel chaperone activity, PLoS Pathog., 7, e1002325, 10.1371/journal.ppat.1002325
Jang, 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function, Cell, 117, 625, 10.1016/j.cell.2004.05.002
Wang, 2003, Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress, J. Biol. Chem., 278, 25179, 10.1074/jbc.M302706200
Pauwels, 2004, Physiological characterization of Haemophilus influenzae Rd deficient in its glutathione-dependent peroxidase PGdx, J. Biol. Chem., 279, 12163, 10.1074/jbc.M312037200
Neuberg, 1913, The destruction of lactic aldehyde and methylglyoxal by animal organs, Biochem. Z., 49, 502
Jowett, 1933, The glyoxalase activity of the red blood cell: the function of glutathione, Biochem. J., 27, 486
Lohmann, 1932, Beitrag zur enzymatischen Umwandlung von synthetischem Methylglyoxal in Milchsäure, Biochem. Z., 254, 332
Racker, 1951, The mechanism of action of glyoxalase, J. Biol. Chem., 190, 685, 10.1016/S0021-9258(18)56017-8
Vander Jagt, 1975, Effects of pH and thiols on the kinetics of yeast glyoxalase I. An evaluation of the random pathway mechanism, Biochemistry, 14, 3669, 10.1021/bi00687a024
Vander Jagt, 1972, Kinetic evaluation of substrate specificity in the glyoxalase-I-catalyzed disproportionation of -ketoaldehydes, Biochemistry, 11, 3735, 10.1021/bi00770a011
Deponte, 2007, Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I, J. Biol. Chem., 282, 28419, 10.1074/jbc.M703271200
Ekwall, 1973, The stereochemical configuration of the lactoyl group of S-lactoylglutathionine formed by the action of glyoxalase I from porcine erythrocytes and yeast, Biochim. Biophys. Acta, 297, 297, 10.1016/0304-4165(73)90076-7
Uotila, 1973, Purification and characterization of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from human liver, Biochemistry, 12, 3944, 10.1021/bi00744a025
Griffis, 1983, Nonstereospecific substrate usage by glyoxalase I, Biochemistry, 22, 2945, 10.1021/bi00281a025
Landro, 1992, Isomerization of (R)- and (S)-glutathiolactaldehydes by glyoxalase I: the case for dichotomous stereochemical behavior in a single active site, Biochemistry, 31, 6069, 10.1021/bi00141a016
Rae, 1994, Stereospecificity of substrate usage by glyoxalase 1: nuclear magnetic resonance studies of kinetics and hemithioacetal substrate conformation, Biochemistry, 33, 3548, 10.1021/bi00178a011
Cameron, 1997, Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping, EMBO J., 16, 3386, 10.1093/emboj/16.12.3386
Cameron, 1999, Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue, Structure, 7, 1067, 10.1016/S0969-2126(99)80174-9
Suttisansanee, 2011, Bacterial glyoxalase enzymes, Semin. Cell Dev. Biol., 22, 285, 10.1016/j.semcdb.2011.02.004
Aronsson, 1978, Glyoxalase I, a zinc metalloenzyme of mammals and yeast, Biochem. Biophys. Res. Commun., 81, 1235, 10.1016/0006-291X(78)91268-8
Cameron, 1999, Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue, Biochemistry, 38, 13480, 10.1021/bi990696c
Bito, 1999, Heterologous expression, purification, and kinetic comparison of the cytoplasmic and mitochondrial glyoxalase II enzymes, Glo2p and Glo4p, from Saccharomyces cerevisiae, Protein Expr. Purif., 17, 456, 10.1006/prep.1999.1151
Bito, 1997, Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins, J. Biol. Chem., 272, 21509, 10.1074/jbc.272.34.21509
Frickel, 2001, Yeast glyoxalase I is a monomeric enzyme with two active sites, J. Biol. Chem., 276, 1845, 10.1074/jbc.M005760200
Penninckx, 1983, The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae, J. Biol. Chem., 258, 6030, 10.1016/S0021-9258(18)32368-8
Crowder, 1997, Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity, FEBS Lett., 418, 351, 10.1016/S0014-5793(97)01416-6
Limphong, 2009, Arabidopsis thaliana mitochondrial glyoxalase 2–1 exhibits beta-lactamase activity, Biochemistry, 48, 8491, 10.1021/bi9010539
Marasinghe, 2005, Structural studies on a mitochondrial glyoxalase II, J. Biol. Chem., 280, 40668, 10.1074/jbc.M509748200
Ridderstrom, 1997, Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana, Biochem. J., 322, 449, 10.1042/bj3220449
Sommer, 2001, A stress-responsive glyoxalase I from the parasitic nematode Onchocerca volvulus, Biochem. J., 353, 445, 10.1042/0264-6021:3530445
Ariza, 2006, Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme, Mol. Microbiol., 59, 1239, 10.1111/j.1365-2958.2006.05022.x
Greig, 2006, Trypanothione-dependent glyoxalase I in Trypanosoma cruzi, Biochem. J., 400, 217, 10.1042/BJ20060882
Irsch, 2004, Glyoxalase II of African trypanosomes is trypanothione-dependent, J. Biol. Chem., 279, 22209, 10.1074/jbc.M401240200
Silva, 2008, Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny, Biochemistry, 47, 195, 10.1021/bi700989m
Vickers, 2004, A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major, Proc. Natl. Acad. Sci. U. S. A., 101, 13186, 10.1073/pnas.0402918101
Armstrong, 2000, Mechanistic diversity in a metalloenzyme superfamily, Biochemistry, 39, 13625, 10.1021/bi001814v
Bergdoll, 1998, All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly, Protein Sci., 7, 1661, 10.1002/pro.5560070801
He, 2000, Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation, Biochemistry, 39, 8719, 10.1021/bi000856g
Iozef, 2003, Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion, FEBS Lett., 554, 284, 10.1016/S0014-5793(03)01146-3
Urscher, 2012, Tight-binding inhibitors efficiently inactivate both reaction centers of monomeric Plasmodium falciparum glyoxalase 1, FEBS J., 279, 2568, 10.1111/j.1742-4658.2012.08640.x
Urscher, 2010, Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases, Mol. Microbiol., 76, 92, 10.1111/j.1365-2958.2010.07082.x
Ridderstrom, 1998, Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I, J. Biol. Chem., 273, 21623, 10.1074/jbc.273.34.21623
Clugston, 2004, Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies, Biochem. J., 377, 309, 10.1042/bj20030271
Sukdeo, 2004, Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes, Biochem. J., 384, 111, 10.1042/BJ20041006
Allen, 1993, A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies, J. Protein Chem., 12, 111, 10.1007/BF01026032
Aronsson, 1979, Purification of glyoxalase I from human erythrocytes by the use of affinity chromatography and separation of the three isoenzymes, Anal. Biochem., 92, 390, 10.1016/0003-2697(79)90676-6
Schimandle, 1979, Isolation and kinetic analysis of the multiple forms of glyoxalase-I from human erythrocytes, Arch. Biochem. Biophys., 195, 261, 10.1016/0003-9861(79)90352-7
Creighton, 2001, Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations, Arch. Biochem. Biophys., 387, 1, 10.1006/abbi.2000.2253
Himo, 2001, Catalytic mechanism of glyoxalase I: a theoretical study, J. Am. Chem. Soc., 123, 10280, 10.1021/ja010715h
Richter, 2001, Active site structure and mechanism of human glyoxalase I—an ab initio theoretical study, J. Am. Chem. Soc., 123, 6973, 10.1021/ja0105966
Lan, 1995, Evidence for a (triosephosphate isomerase-like) “catalytic loop” near the active site of glyoxalase I, J. Biol. Chem., 270, 12957, 10.1074/jbc.270.22.12957
Creighton, 1988, Optimization of efficiency in the glyoxalase pathway, Biochemistry, 27, 7376, 10.1021/bi00419a031
Su, 2008, 15N-1H HSQC NMR evidence for distinct specificity of two active sites in Escherichia coli glyoxalase I, Biochemistry, 47, 13232, 10.1021/bi8013278
Campos-Bermudez, 2007, Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity, Biochemistry, 46, 11069, 10.1021/bi7007245
Daiyasu, 2001, Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold, FEBS Lett., 503, 1, 10.1016/S0014-5793(01)02686-2
Mitic, 2006, The catalytic mechanisms of binuclear metallohydrolases, Chem. Rev., 106, 3338, 10.1021/cr050318f
O'Young, 2007, Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme, Arch. Biochem. Biophys., 459, 20, 10.1016/j.abb.2006.11.024
Urscher, 2009, Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid–base catalysis, Biol. Chem., 390, 1171, 10.1515/BC.2009.127
Zang, 2001, Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis, J. Biol. Chem., 276, 4788, 10.1074/jbc.M005090200
Schilling, 2003, Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo, Biochemistry, 42, 11777, 10.1021/bi034672o
Allen, 1993, Purification and characterisation of glyoxalase II from human red blood cells, Eur. J. Biochem., 213, 1261, 10.1111/j.1432-1033.1993.tb17877.x
Wendler, 2009, Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes, Mol. Biochem. Parasitol., 163, 19, 10.1016/j.molbiopara.2008.09.005
Cordell, 2004, The Human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II, J. Biol. Chem., 279, 28653, 10.1074/jbc.M403470200
Akoachere, 2005, Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts, Biol. Chem., 386, 41, 10.1515/BC.2005.006
Talesa, 1989, Isolation of glyoxalase II from two different compartments of rat liver mitochondria. Kinetic and immunochemical characterization of the enzymes, Biochim. Biophys. Acta, 993, 7, 10.1016/0304-4165(89)90135-9
Opperdoes, 1977, Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome, FEBS Lett., 80, 360, 10.1016/0014-5793(77)80476-6
Ridderstrom, 2000, The active-site residue tyr-175 in human glyoxalase II contributes to binding of glutathione derivatives, Biochim. Biophys. Acta, 1481, 344, 10.1016/S0167-4838(00)00178-3
Chen, 2009, Reaction mechanism of the binuclear zinc enzyme glyoxalase II — a theoretical study, J. Inorg. Biochem., 103, 274, 10.1016/j.jinorgbio.2008.10.016
Guha, 1988, Diffusion-dependent rates for the hydrolysis reaction catalyzed by glyoxalase II from rat erythrocytes, Biochemistry, 27, 8818, 10.1021/bi00424a020
Inoue, 1996, Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae, J. Biol. Chem., 271, 25958, 10.1074/jbc.271.42.25958
Inoue, 2011, Glyoxalase system in yeasts: structure, function, and physiology, Semin. Cell Dev. Biol., 22, 278, 10.1016/j.semcdb.2011.02.002
MacLean, 1998, The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli, Mol. Microbiol., 27, 563, 10.1046/j.1365-2958.1998.00701.x
Brouwers, 2011, Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats, J. Biol. Chem., 286, 1374, 10.1074/jbc.M110.144097
Morcos, 2008, Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans, Aging Cell, 7, 260, 10.1111/j.1474-9726.2008.00371.x
Kawatani, 2008, The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I, Proc. Natl. Acad. Sci. U. S. A., 105, 11691, 10.1073/pnas.0712239105
Xu, 2006, Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family, J. Biol. Chem., 281, 26702, 10.1074/jbc.M604758200
Vince, 1969, Glyoxalase inhibitors as potential anticancer agents, Biochem. Biophys. Res. Commun., 35, 593, 10.1016/0006-291X(69)90445-8
More, 2009, Inhibition of glyoxalase I: the first low-nanomolar tight-binding inhibitors, J. Med. Chem., 52, 4650, 10.1021/jm900382u
Chauhan, 2009, Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification, PLoS One, 4, e6805, 10.1371/journal.pone.0006805
Mannervik, 2005, Nomenclature for mammalian soluble glutathione transferases, Methods Enzymol., 401, 1, 10.1016/S0076-6879(05)01001-3
Habig, 1974, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249, 7130, 10.1016/S0021-9258(19)42083-8
Prohaska, 1976, Glutathione peroxidase activity of glutathione-s-transferases purified from rat liver, Biochem. Biophys. Res. Commun., 76, 437, 10.1016/0006-291X(77)90744-6
Benson, 1977, Relationship between the soluble glutathione-dependent delta 5-3-ketosteroid isomerase and the glutathione S-transferases of the liver, Proc. Natl. Acad. Sci. U. S. A., 74, 158, 10.1073/pnas.74.1.158
Christ-Hazelhof, 1979, Purification and characterisation of prostaglandin endoperoxide D-isomerase, a cytoplasmic, glutathione-requiring enzyme, Biochim. Biophys. Acta, 572, 43, 10.1016/0005-2760(79)90198-X
Wahllander, 1979, Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases, FEBS Lett., 97, 138, 10.1016/0014-5793(79)80069-1
Kraus, 1980, Resolution, purification and some properties of three glutathione transferases from rat liver mitochondria, Hoppe Seylers Z. Physiol. Chem., 361, 9, 10.1515/bchm2.1980.361.1.9
Harris, 1991, A novel glutathione transferase (13–13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes, Biochem. J., 278, 137, 10.1042/bj2780137
Pemble, 1996, Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue, Biochem. J., 319, 749, 10.1042/bj3190749
Allocati, 2009, Glutathione transferases in bacteria, FEBS J., 276, 58, 10.1111/j.1742-4658.2008.06743.x
Di Ilio, 1988, Purification and characterization of three forms of glutathione transferase from Proteus mirabilis, Biochem. J., 255, 971, 10.1042/bj2550971
Iizuka, 1989, Purification and some properties of glutathione S-transferase from Escherichia coli B, J. Bacteriol., 171, 6039, 10.1128/jb.171.11.6039-6042.1989
Smith, 1988, Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase, Gene, 67, 31, 10.1016/0378-1119(88)90005-4
Mannervik, 1982, Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol, J. Biol. Chem., 257, 9909, 10.1016/S0021-9258(18)33960-7
Reinemer, 1991, The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution, EMBO J., 10, 1997, 10.1002/j.1460-2075.1991.tb07729.x
Ji, 1992, The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3–3 and glutathione at 2.2-A resolution, Biochemistry, 31, 10169, 10.1021/bi00157a004
Sinning, 1993, Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes, J. Mol. Biol., 232, 192, 10.1006/jmbi.1993.1376
Ladner, 2004, Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1, Biochemistry, 43, 352, 10.1021/bi035832z
Ogino, 1977, Prostaglandin endoperoxide E isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme, J. Biol. Chem., 252, 890, 10.1016/S0021-9258(19)75182-5
Nemoto, 1975, Assay and properties of glutathione-S-benzo(a)pyrene-4,5-oxide transferase, Arch. Biochem. Biophys., 170, 739, 10.1016/0003-9861(75)90172-1
Friedberg, 1979, The identification, solubilization, and characterization of microsome-associated glutathione S-transferases, J. Biol. Chem., 254, 12028, 10.1016/S0021-9258(19)86422-0
Morgenstern, 1982, Microsomal glutathione S-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B and C, Eur. J. Biochem., 128, 243, 10.1111/j.1432-1033.1982.tb06958.x
Morgenstern, 1985, Microsomal glutathione transferase. Primary structure, J. Biol. Chem., 260, 13976, 10.1016/S0021-9258(17)38671-4
Yoshimoto, 1985, Isolation and characterization of leukotriene C4 synthetase of rat basophilic leukemia cells, Proc. Natl. Acad. Sci. U. S. A., 82, 8399, 10.1073/pnas.82.24.8399
Lam, 1994, Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4, Proc. Natl. Acad. Sci. U. S. A., 91, 7663, 10.1073/pnas.91.16.7663
Welsch, 1994, Molecular cloning and expression of human leukotriene-C4 synthase, Proc. Natl. Acad. Sci. U. S. A., 91, 9745, 10.1073/pnas.91.21.9745
Dixon, 1990, Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis, Nature, 343, 282, 10.1038/343282a0
Jakobsson, 1999, Common structural features of MAPEG — a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism, Protein Sci., 8, 689, 10.1110/ps.8.3.689
Jakobsson, 1999, Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target, Proc. Natl. Acad. Sci. U. S. A., 96, 7220, 10.1073/pnas.96.13.7220
Hebert, 1997, The 3.0 A projection structure of microsomal glutathione transferase as determined by electron crystallography of p 21212 two-dimensional crystals, J. Mol. Biol., 271, 751, 10.1006/jmbi.1997.1216
Holm, 2006, Structural basis for detoxification and oxidative stress protection in membranes, J. Mol. Biol., 360, 934, 10.1016/j.jmb.2006.05.056
Ago, 2007, Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis, Nature, 448, 609, 10.1038/nature05936
Martinez Molina, 2007, Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase, Nature, 448, 613, 10.1038/nature06009
Jegerschold, 2008, Structural basis for induced formation of the inflammatory mediator prostaglandin E2, Proc. Natl. Acad. Sci. U. S. A., 105, 11110, 10.1073/pnas.0802894105
Dixon, 2002, Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana, J. Biol. Chem., 277, 30859, 10.1074/jbc.M202919200
Morel, 2004, Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization, J. Biol. Chem., 279, 16246, 10.1074/jbc.M313357200
Sheehan, 2001, Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily, Biochem. J., 360, 1, 10.1042/0264-6021:3600001
Deponte, 2005, Glutathione S-transferase from malarial parasites: structural and functional aspects, Methods Enzymol., 401, 241, 10.1016/S0076-6879(05)01015-3
Fyfe, 2012, Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation, Proc. Natl. Acad. Sci. U. S. A., 109, 11693, 10.1073/pnas.1202593109
Allocati, 2012, Distribution of glutathione transferases in Gram-positive bacteria and Archaea, Biochimie, 94, 588, 10.1016/j.biochi.2011.09.008
Xun, 2010, S-Glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases, Biochem. J., 428, 419, 10.1042/BJ20091863
Ji, 1993, Snapshots along the reaction coordinate of an SNAr reaction catalyzed by glutathione transferase, Biochemistry, 32, 12949, 10.1021/bi00211a001
Ji, 1994, Structure and function of the xenobiotic substrate binding site of a glutathione S-transferase as revealed by X-ray crystallographic analysis of product complexes with the diastereomers of 9-(S-glutathionyl)-10-hydroxy-9,10-dihydrophenanthrene, Biochemistry, 33, 1043, 10.1021/bi00171a002
Robinson, 2004, Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases, Biochem. J., 379, 541, 10.1042/bj20031656
Rinaldo-Matthis, 2012, Pre-steady-state kinetic characterization of thiolate anion formation in human leukotriene C(4) synthase, Biochemistry, 51, 848, 10.1021/bi201402s
Rinaldo-Matthis, 2010, Arginine 104 is a key catalytic residue in leukotriene C4 synthase, J. Biol. Chem., 285, 40771, 10.1074/jbc.M110.105940
Saino, 2011, The catalytic architecture of leukotriene C4 synthase with two arginine residues, J. Biol. Chem., 286, 16392, 10.1074/jbc.M110.150177
Busenlehner, 2007, Location of substrate binding sites within the integral membrane protein microsomal glutathione transferase-1, Biochemistry, 46, 2812, 10.1021/bi6023385
Prage, 2011, Location of inhibitor binding sites in the human inducible prostaglandin E synthase, MPGES1, Biochemistry, 50, 7684, 10.1021/bi2010448
Pawelzik, 2010, Identification of key residues determining species differences in inhibitor binding of microsomal prostaglandin E synthase-1, J. Biol. Chem., 285, 29254, 10.1074/jbc.M110.114454
Prage, 2012, Observation of two modes of inhibition of human microsomal prostaglandin E synthase 1 by the cyclopentenone 15-deoxy-Delta(12,14)-prostaglandin J(2), Biochemistry, 51, 2348, 10.1021/bi2019332
Hamza, 2010, Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: insights from computational alanine scanning and site-directed mutagenesis, J. Phys. Chem. B, 114, 5605, 10.1021/jp100668y
Board, 1997, Zeta, a novel class of glutathione transferases in a range of species from plants to humans, Biochem. J., 328, 929, 10.1042/bj3280929
Fernandez-Canon, 1998, Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue, J. Biol. Chem., 273, 329, 10.1074/jbc.273.1.329
Johansson, 2001, Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones, J. Biol. Chem., 276, 33061, 10.1074/jbc.M104539200
Kanaoka, 1997, Cloning and crystal structure of hematopoietic prostaglandin D synthase, Cell, 90, 1085, 10.1016/S0092-8674(00)80374-8
Yamada, 2005, Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2), J. Mol. Biol., 348, 1163, 10.1016/j.jmb.2005.03.035
Pabst, 1974, Glutathione S-transferase A. A novel kinetic mechanism in which the major reaction pathway depends on substrate concentration, J. Biol. Chem., 249, 7140, 10.1016/S0021-9258(19)42084-X
Gillham, 1973, The mechanism of the reaction between glutathione and 1-menaphthyl sulphate catalysed by a glutathione S-transferase from rat liver, Biochem. J., 135, 797, 10.1042/bj1350797
Jakobson, 1979, Multiple inhibition of glutathione S-transferase A from rat liver by glutathione derivatives: kinetic analysis supporting a steady-state random sequential mechanism, Biochem. J., 177, 861, 10.1042/bj1770861
Jakobson, 1979, The binding of substrates and a product of the enzymatic reaction to glutathione S-transferase A, J. Biol. Chem., 254, 7085, 10.1016/S0021-9258(18)50287-8
Chen, 1988, Dissection of the catalytic mechanism of isozyme 4–4 of glutathione S-transferase with alternative substrates, Biochemistry, 27, 647, 10.1021/bi00402a023
Schramm, 1984, Kinetic studies and active site-binding properties of glutathione S-transferase using spin-labeled glutathione, a product analogue, J. Biol. Chem., 259, 714, 10.1016/S0021-9258(17)43516-2
Zhang, 2008, “Restoration” of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2, J. Mol. Biol., 384, 641, 10.1016/j.jmb.2008.09.047
Xiao, 1996, First-sphere and second-sphere electrostatic effects in the active site of a class mu gluthathione transferase, Biochemistry, 35, 4753, 10.1021/bi960189k
Johansson, 2002, Active-site residues governing high steroid isomerase activity in human glutathione transferase A3-3, J. Biol. Chem., 277, 16648, 10.1074/jbc.M201062200
Labrou, 2001, Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I, Biochem. J., 358, 101, 10.1042/0264-6021:3580101
Liu, 1992, Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3–3 of glutathione S-transferase, J. Biol. Chem., 267, 4296, 10.1016/S0021-9258(18)42831-1
Lo Bello, 1997, Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme, Biochemistry, 36, 6207, 10.1021/bi962813z
Pettersson, 2002, Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase, J. Biol. Chem., 277, 30019, 10.1074/jbc.M204485200
Vararattanavech, 2007, A functionally conserved basic residue in glutathione transferases interacts with the glycine moiety of glutathione and is pivotal for enzyme catalysis, Biochem. J., 406, 247, 10.1042/BJ20070422
Prade, 1997, Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor, Structure, 5, 1287, 10.1016/S0969-2126(97)00281-5
Allardyce, 1999, The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases, Biochem. J., 343, 525, 10.1042/0264-6021:3430525
Hitchens, 2001, Disorder-to-order transition of the active site of human class Pi glutathione transferase, GST P1-1, Biochemistry, 40, 11660, 10.1021/bi010909+
Oakley, 1998, Evidence for an induced-fit mechanism operating in pi class glutathione transferases, Biochemistry, 37, 9912, 10.1021/bi980323w
Stella, 1999, Molecular dynamics simulations of human glutathione transferase P1-1: analysis of the induced-fit mechanism by GSH binding, Proteins, 37, 1, 10.1002/(SICI)1097-0134(19991001)37:1<1::AID-PROT1>3.0.CO;2-B
Wang, 2011, Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism, Biochem. J., 439, 215, 10.1042/BJ20110753
Graminski, 1989, Formation of the 1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione S-transferase: evidence for enzymic stabilization of sigma-complex intermediates in nucleophilic aromatic substitution reactions, Biochemistry, 28, 6252, 10.1021/bi00441a017
Board, 2000, Identification, characterization, and crystal structure of the Omega class glutathione transferases, J. Biol. Chem., 275, 24798, 10.1074/jbc.M001706200
Bousset, 2004, Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p, Biochemistry, 43, 5022, 10.1021/bi049828e
Bai, 2004, The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms, J. Biol. Chem., 279, 50025, 10.1074/jbc.M406612200
Bruns, 1999, Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products, J. Mol. Biol., 288, 427, 10.1006/jmbi.1999.2697
Hamilton, 2003, Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts, J. Am. Chem. Soc., 125, 15049, 10.1021/ja030396p
Oakley, 1997, The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate, Biochemistry, 36, 576, 10.1021/bi962316i
Chen, 1995, Stereoselective catalysis of a retro-Michael reaction by class mu glutathione transferases. Consequences for the internal distribution of products in the active site, Chem. Res. Toxicol., 8, 580, 10.1021/tx00046a012
Gu, 2004, Crystal structure of human glutathione S-transferase A3-3 and mechanistic implications for its high steroid isomerase activity, Biochemistry, 43, 15673, 10.1021/bi048757g
Tars, 2010, Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases, J. Mol. Biol., 397, 332, 10.1016/j.jmb.2010.01.023
Calvaresi, 2012, Computational evidence for the catalytic mechanism of human glutathione S-transferase A3-3: a QM/MM investigation, ACS Catal., 2, 280, 10.1021/cs200369b
Khojasteh-Bakht, 1999, Glutathione S-transferase catalyzes the isomerization of (R)-2-hydroxymenthofuran to mintlactones, Arch. Biochem. Biophys., 370, 59, 10.1006/abbi.1999.1361
Wu, 1997, Solution structure of 3-oxo-delta5-steroid isomerase, Science, 276, 415, 10.1126/science.276.5311.415
Bjornestedt, 1995, Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1, J. Mol. Biol., 247, 765, 10.1016/S0022-2836(05)80154-8
Chen, 1998, Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro, Biochem. J., 336, 223, 10.1042/bj3360223
Jowsey, 2001, Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases, Biochem. J., 359, 507, 10.1042/0264-6021:3590507
Pinzar, 2000, Structural basis of hematopoietic prostaglandin D synthase activity elucidated by site-directed mutagenesis, J. Biol. Chem., 275, 31239, 10.1074/jbc.M000750200
Inoue, 2003, Mechanism of metal activation of human hematopoietic prostaglandin D synthase, Nat. Struct. Biol., 10, 291, 10.1038/nsb907
Board, 2003, Clarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique, Biochem. J., 374, 731, 10.1042/bj20030625
Anandarajah, 2000, Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol, Biochemistry, 39, 5303, 10.1021/bi9923813
Fang, 2011, Identification and clarification of the role of key active site residues in bacterial glutathione S-transferase zeta/maleylpyruvate isomerase, Biochem. Biophys. Res. Commun., 410, 452, 10.1016/j.bbrc.2011.05.155
Thom, 2001, The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism, J. Mol. Biol., 308, 949, 10.1006/jmbi.2001.4638
Marsh, 2008, Structure of bacterial glutathione-S-transferase maleyl pyruvate isomerase and implications for mechanism of isomerisation, J. Mol. Biol., 384, 165, 10.1016/j.jmb.2008.09.028
Seltzer, 1979, Maleylacetone cis–trans-isomerase. Mechanism of the interaction of coenzyme glutathione and substrate maleylacetone in the presence and absence of enzyme, J. Am. Chem. Soc., 101, 3091, 10.1021/ja00505a042
Morgenstern, 1983, Microsomal glutathione transferase. Purification in unactivated form and further characterization of the activation process, substrate specificity and amino acid composition, Eur. J. Biochem., 134, 591, 10.1111/j.1432-1033.1983.tb07607.x
Svensson, 2004, Kinetic characterization of thiolate anion formation and chemical catalysis of activated microsomal glutathione transferase 1, Biochemistry, 43, 8869, 10.1021/bi0492511
Morgenstern, 2001, Kinetic analysis of the slow ionization of glutathione by microsomal glutathione transferase MGST1, Biochemistry, 40, 3378, 10.1021/bi0023394
Alander, 2009, Microsomal glutathione transferase 1 exhibits one-third-of-the-sites-reactivity towards glutathione, Arch. Biochem. Biophys., 487, 42, 10.1016/j.abb.2009.04.009
He, 2011, Microsomal prostaglandin E synthase-1 exhibits one-third-of-the-sites reactivity, Biochem. J., 440, 13, 10.1042/BJ20110977
Izumi, 1988, Solubilization and partial purification of leukotriene C4 synthase from guinea-pig lung: a microsomal enzyme with high specificity towards 5,6-epoxide leukotriene A4, Biochim. Biophys. Acta, 959, 305, 10.1016/0005-2760(88)90204-4
Hammarberg, 2009, Mutation of a critical arginine in microsomal prostaglandin E synthase-1 shifts the isomerase activity to a reductase activity that converts prostaglandin H2 into prostaglandin F2alpha, J. Biol. Chem., 284, 301, 10.1074/jbc.M808365200
Fahey, 1987, The evolution of glutathione metabolism in phototrophic microorganisms, J. Mol. Evol., 25, 81, 10.1007/BF02100044
Sundquist, 1989, Evolution of antioxidant mechanisms: thiol-dependent peroxidases and thioltransferase among procaryotes, J. Mol. Evol., 29, 429, 10.1007/BF02602913
Hu, 2008, The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix, J. Biol. Chem., 283, 29126, 10.1074/jbc.M803028200
Kojer, 2012, Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state, EMBO J., 31, 3169, 10.1038/emboj.2012.165
Ostergaard, 2004, Monitoring disulfide bond formation in the eukaryotic cytosol, J. Cell Biol., 166, 337, 10.1083/jcb.200402120
Dixon, 2008, Assessment of endoplasmic reticulum glutathione redox status is confounded by extensive ex vivo oxidation, Antioxid. Redox Signal., 10, 963, 10.1089/ars.2007.1869
Hwang, 1992, Oxidized redox state of glutathione in the endoplasmic reticulum, Science, 257, 1496, 10.1126/science.1523409
Jones, 1998, Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC, Clin. Chim. Acta, 275, 175, 10.1016/S0009-8981(98)00089-8