Glutamine Repeats and Neurodegeneration
Tóm tắt
A growing number of neurodegenerative diseases have been found to result from the expansion of an unstable trinucleotide repeat. Over the past 6 years, researchers have focused on identifying the mechanism by which the expanded polyglutamine tract renders a protein toxic to a subset of vulnerable neurons. In this review, we summarize the clinicopathologic features of these disorders (spinobulbar muscular atrophy, Huntington disease, and the spinocerebellar ataxias, including dentatorubropallidoluysian atrophy), describe the genes involved and what is known about their products, and discuss the model systems that have lent insight into pathogenesis. The review concludes with a model for pathogenesis that illuminates the unifying features of these polyglutamine disorders. This model may prove relevant to other neurodegenerative disorders as well.
Từ khóa
Tài liệu tham khảo
Banfi S, Servadio A, Chung M-y, Capozzoli F, Duvick LA, et al. 1996. Cloning and developmental expression analysis of the murine homolog of the spinocerebellar ataxia type 1 gene (Sca1).Hum. Mol. Genet.5:33–40
Burke JR, Enghild JJ, Martin ME, Jou Y-S, Myers RM, et al. 1996. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH.Nat. Med.2(3):347– 50
Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, et al. 1994. The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family.Nat. Genet.7:521–24
Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, et al. 1995. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat.Cell82:937–48
Butler R, Leigh PN, McPhaul MJ, Gallo JM. 1998. Truncated forms of the androgen receptor are associated with polyglutamine expansion in X-linked spinal and bulbar muscular atrophy.Hum. Mol. Genet.7(1):121–27
Chai Y, Koppenhafer SL, Shoesmith SJ, Perez MK, Paulson HL. 1999. Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro.Hum. Mol. Genet.8(4):673–82
Chen YW, Stott K, Perutz MF. 1999. Crystal structure of a dimeric chymotrypsin inhibitor 2 mutant containing an inserted glutamine repeat.Proc. Natl. Acad. Sci. USA96(4):1257–61
Chong SS, McCall AE, Cota J, Subramony SH, Orr HT, et al. 1995. Gametic and somatic tissue-specific heterogeneity of the expandedSCA1CAG repeat in spinocerebellar ataxia type 1.Nat. Genet.10:344–50
Chung M-y, Ranum LPW, Duvick L, Servadio A, Zoghbi HY, et al. 1993. Analysis of the CAG repeat expansion in spinocerebellar ataxia type I: evidence for a possible mechanism predisposing to instability.Nat. Genet.5:254–58
Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, et al. 1997. Purkinje cell expression of a mutant allele ofSCA1in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations.J. Neurosci.17(19):7385–95
David G, Dürr A, Stevanin G, Cancel G, Abbas N, et al. 1998. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7).Hum. Mol. Genet.7(2):165–70
Davies AF, Mirza G, Sekhon G, Turnpenny P, Leroy F, et al. 1999. Delineation of two distinct 6p deletion syndromes.Hum. Genet.104(1):64–72
Davies SW, Beardsall K, Turmaine M, DiFiglia M, Aronin N, et al. 1998. Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions?Lancet351:131–33
Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, et al. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation.Cell90(3):537– 48
Del-Favero J, Krols L, Michalik A, Theuns J, Lofgren A, et al. 1998. Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion.Hum. Mol. Genet.7(2):177–86
DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, et al. 1997. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain.Science277(26):1990–93
Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, et al. 1995. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families.Brain118:1573–81
Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, et al. 1996. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular and neuropathological features.Ann. Neurol.39:490–99
Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, et al. 1995. Inactivation of the mouse Huntington’s disease gene homologHdh.Science269:407–10
Faber PW, Alter JR, MacDonald ME, Hart AC. 1999. Polyglutamine-mediated dysfunction and apoptotic death of aCaenorhabditis eleganssensory neuron.Proc. Natl. Acad. Sci. USA96(1):179–84
Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, et al. 1998. Huntingtin interacts with a family of WW domain proteins.Hum. Mol. Genet.7(9):1463–74
Fu Y-H, Kuhl DPA, Pizutti A, Pieretti M, Sutcliffe JS, et al. 1991. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox.Cell67:1047–58
Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM. 1997a. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia.Am. J. Hum. Genet.60(4):842– 50
Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, et al. 1997b. Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations.Neurology49(5):1247–51
Giunti P, Sweeney MG, Harding AE. 1995. Detection of the Machado-Joseph disease/spinocerebellar ataxia three trinucleotide repeat expansion in families with autosomal dominant motor disorders, including the Drew family of Walworth.Brain118:1077–85
Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, et al. 1996. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract.Nat. Genet.13(4):442–49
Goldfarb LG, Vasconcelos O, Platonov FA, Lunkes A, Kipnis V, et al. 1996. Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1.Ann. Neurol.39(4):500–6
Gouw LG, Castaneda MA, McKenna CK, Digre KB, Pulst SM, et al. 1998. Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission.Hum. Mol. Genet.7(3):525–32
Green H. 1993. Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism.Cell74:955–56
Greenfield JG. 1954.The Spino-Cerebellar Degenerations.Springfield, IL: Thomas. 112 pp.
Harper PS, Morris MJ, Quarrell O, Shaw DJ, Tyler A, et al. 1991.Huntington’s Disease.Philadelphia: Saunders
Holmberg M, Duyckaerts C, Dürr A, Cancel G, Gourfinkel-An I, et al. 1998. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions.Hum. Mol. Genet.7(5):913–18
Hurlbert MS, Zhou W, Wasmeier C, Kaddis FG, Hutton JC, et al. 1999. Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes.Diabetes48(3):649–51
Huynh DP, Del Bigio MR, Ho DH, Pulst SM. 1999. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer’s disease and spinocerebellar ataxia 2.Ann. Neurol.45(2):232–41
Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, et al. 1998. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch.Nat. Genet.18(2):111–17
Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, et al. 1996. Expanded polyglutamine in the Machado-Joseph disease protein induces cell deathin vitroandin vivo.Nat. Genet.13:196–202
Ikeuchi T, Koide R, Tanaka H, Onodera O, Igarashi S, et al. 1995. Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat.Ann. Neurol.37(6):769–75
Ikeuchi T, Takano H, Koide R, Horikawa Y, Honma Y, et al. 1997. Spinocerebellar ataxia type 6: CAG repeat expansion in α1Avoltage-dependent calcium channel gene and clinical variations in Japanese population.Ann. Neurol.42(6):879–84
Jackson GR, Salecker I, Dong X, Yao X, Arnheim N, et al. 1998. Polyglutamineexpanded human huntingtin transgenes induce degeneration ofDrosophilaphotoreceptor neurons.Neuron21(3):633–42
Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, et al. 1991. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization.Mol. Endocrinol.5(10):1396–404
1994, Am. J. Hum. Genet., 54, 959
Jodice C, Mantuano E, Veneziano L, Trettel F, Sabbadini G, et al. 1997. Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p.Hum. Mol. Genet.6(11):1973– 78
Johansson J, Forsgren L, Sandgren O, Brice A, Holmgren G, et al. 1998. Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation.Hum. Mol. Genet.7(2):171–76
Jou YS, Myers RM. 1995. Evidence from antibody studies that the CAG repeat in the Huntington disease gene is expressed in the protein.Hum. Mol. Genet.4(3):465–69
Kahlem P, Green H, Djian P. 1998. Transglutaminase action imitates Huntington’s disease: selective polymerization of Huntingtin containing expanded polyglutamine.Mol. Cell1(4):595–601
Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, et al. 1996. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme.J. Biol. Chem.271(32):19385–94
Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, et al. 1997.HIP1,a human homologue ofS. cerevisiaeSla2p,interacts with membrane-associated huntingtin in the brain.Nat. Genet.16:44–53
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, et al. 1994. CAG expansions in a novel gene for MachadoJoseph disease at chromosome 14q32.1.Nat. Genet.8(3):221–27
Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, et al. 1998. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice.Cell95(1):41–53
Knight SP, Richardson MM, Osmand AP, Stakkestad A, Potter NT. 1997. Expression and distribution of the dentatorubral-pallidoluysian atrophy gene product (atrophin1/drplap) in neuronal and non-neuronal tissues.J. Neurol. Sci.146(1):19–26
Koeppen AH, Barron KD. 1984. The neuropathology of olivopontocerebellar atrophy. InThe Olivopontocerebellar Atrophies,ed. RC Duvoisin, A Plaitakis, pp. 13–38. New York: Raven
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, et al. 1994. Unstable expansion of CAG repeat in hereditary dentatorubralpallidoluysian atrophy (DRPLA).Nat. Genet.6:9–13
Koshy BT, Matilla A, Zoghbi HY. 1998. Clues about the pathogenesis of SCA1 from biochemical and molecular studies of ataxin-1. InGenetic Instabilities and Hereditary Neurological Disorders,ed. RD Wells, ST Warren, pp. 241–48. San Diego: Academic
Lin B, Nasir J, MacDonald H, Hutchinson G, Graham RK, et al. 1994. Sequence of the murine Huntington disease gene: evidence for conservation, alternate splicing and polymorphism in a triplet (CCG) repeat.Hum. Mol. Genet.3(1):85-92
Erratum. 1994.Hum. Mol. Genet.3(3):530
Llinas RR, Sugimori M, Cherksey B. 1989. Voltage-dependent calcium conductances in mammalian neurons: the P channel.Ann. NY Acad. Sci.560:103–11
Lunkes A, Mandel JL. 1998. A cellular model that recapitulates major pathogenic steps of Huntington’s disease.Hum. Mol. Genet.7(9):1355–61
Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, et al. 1995. Correlation between CAG repeat length and clinical features in Machado-Joseph disease.Am. J. Hum. Genet.57(1):54–61
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, et al. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice.Cell87:493– 506
Martin JJ, Van Regemorter N, Krols L, Brucher JM, de Barsy T, et al. 1994. On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family.Acta Neuropathol.88(4):277–86
Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, et al. 1998. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates.Nat. Genet.18(2):150–54
Maruyama H, Nakamura S, Matsuyama Z, Sakai T, Doyu M, et al. 1995. Molecular features of the CAG repeats and clinical manifestation of Machado-Joseph disease.Hum. Mol. Genet.4(5):807–12
Matilla A, Roberson ED, Banfi S, Morales J, Armstrong DL, et al. 1998. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation.J. Neurosci.18(14):5508–16
Matsuyama Z, Kawakami H, Maruyama H, Izumi Y, Komure O, et al. 1997. Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6).Hum. Mol. Genet.6(8):1283–87
Merry DE, Kobayashi Y, Bailey CK, Taye AA, Fischbeck KH. 1998. Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy.Hum. Mol. Genet.7(4):693–701
Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, et al. 1998. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families.Neurology51(6):1666–71
Naito H, Oyanagi S. 1982. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy.Neurology32:798–807
Neetens A, Martin JJ, Libert J. 1990. Autosomal dominant cone dystrophy-cerebellar atrophy (ADCoCA) (modified ADCA HardingII).Neuro-ophthalmology10:261– 75
Ordway JM, Tallaksen-Greene S, Gutekunst CA, Bernstein EM, Cearley JA, et al. 1997. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse.Cell91(6):753–63
Orozco G, Estrada R, Perry TL, Arana J, Fernandez R, et al. 1989. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological, and biochemical findings.J. Neurol. Sci.93:37–50
Persichetti F, Ambrose CM, Ge P, McNeil SM, Srinidhi J, et al. 1995. Normal and expanded Huntington’s disease gene alleles produce distinguishable proteins due to translation across the CAG repeat.Mol. Med.1(4):374–83
Persichetti F, Carlee L, Faber PW, McNeil SM, Ambrose CM, et al. 1996. Differential expression of normal and mutant Huntington’s disease gene alleles.Neurobiol. Dis.3(3):183–90
Perutz MF, Johnson T, Suzuki M, Finch JT. 1994. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases.Proc. Natl. Acad. Sci. USA91:5355–58
Pulst S-M, Nechiporuk A, Nechiporuk T, Gispert S, Chen X-N, et al. 1996. Identification of the SCA2 gene: moderate expansion of a normally biallelic trinucleotide repeat.Nat. Genet.14:269–76
Pulst SM, Nechiporuk A, Starkman S. 1993. Anticipation in spinocerebellar ataxia type 2.Nat. Genet.5(1):8–10
Quan F, Janas J, Popovich BW. 1995. A novel CAG repeat configuration in the SCA1 gene: implications for the molecular diagnostics of spinocerebellar ataxia type 1.Hum. Mol. Genet.4(12):2411–13
Ranum LPW, Chung M-y, Banfi S, Bryer A, Schut LJ, et al. 1994. Molecular and clinical correlations in spinocerebellar ataxia type 1 (SCA1): evidence for familial effects on the age of onset.Am. J. Hum. Genet.55:244– 52
Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, et al. 1998. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA.Nat. Genet.20(2):198–202
Riess O, Schols L, Bottger G, Nolte D, VieiraSaecker AMM, et al. 1997. SCA6 is caused by moderate CAG expansion in the α1Avoltage-dependent calcium channel gene.Hum. Mol. Genet.6(8):1289–93
Roizin L, Stellar S, Liu JD. 1979. Neuronal nuclear-cytoplasmic changes in Huntingtons chorea: electron microscope investigations. InAdvances in Neurology,ed. TN Chase, A Barbeau, pp. 95–122. New York: Raven
Ross CA. 1997. Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases?Neuron19(6):1147–50
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, et al. 1996. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique.Nat. Genet.14(3):277–84
Saudou F, Finkbeiner S, Devys D, Greenberg ME. 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions.Cell95(1):55–66
Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, et al. 1997. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo.Cell90(3):549–58
Schöls L, Kruger R, Amoiridis G, Przuntek H, Epplen JT, et al. 1998. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds.J. Neurol. Neurosurg. Psychiatr.64(1):67–73
Smith JK. 1975. Dentatorubropallidoluysian atrophy. InHandbook of Clinical Neurology,ed. PJ Vinken, GW Bruyn, pp. 519– 34. Amsterdam: North-Holland
Sobue G, Hashizume Y, Mukai E, Hirayama M, Mitsuma T, et al. 1989. X-linked recessive bulbospinal neuronopathy. A clinicopathological study.Brain112:209–32
Stenoien DL, Cummings CJ, Adams HP, Mancini MG, Patel K, et al. 1999. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone.Hum. Mol. Genet.8(5):731–41
Stevanin G, Giunti P, Belal GDS, Dürr A, Ruberg M, et al. 1998. De novo expansion of intermediate alleles in spinocerebellar ataxia 7.Hum. Mol. Genet.7(11):1809–13
Stevanin G, Trottier Y, Cancel G, Durr A, David G, et al. 1996. Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias.Hum. Mol. Genet.5(12):1887–92
Stott K, Blackburn JM, Butler PJG, Perutz M. 1995. Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases.Proc. Natl. Acad. Sci. USA92(14):6509–13
Tait D, Riccio M, Sittler A, Scherzinger E, Santi S, et al. 1998. Ataxin-3 is transported into the nucleus and associates with the nuclear matrix.Hum. Mol. Genet.7(6):991–97
Takahashi H, Ohama E, Naito H, Takeda S, Nakashima S, et al. 1988. Hereditary dentatorubral-pallidoluysian atrophy: clinical and pathologic variants in a family.Neurology38:1065–70
Takiyama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, et al. 1994. A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q.Neurology44(7):1302–8
Uyama E, Kondo I, Uchino M, Fukushima T, Murayama N, et al. 1995. Dentatorubralpallidoluysian atrophy (DRPLA): clinical, genetic, and neuroradiologic studies in a family.J. Neurol. Sci.130(2):146–53
Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, et al. 1998. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila.Cell93(6):939–49
Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, et al. 1998. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract.J. Biol. Chem.273(15):9158– 67
White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, et al. 1997. Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion.Nat. Genet.17(4):404–10
Wilkinson MG, Millar JB. 1998. SAPKs and transcription factors do the nucleocytoplasmic tango.Genes Dev.12(10):1391–97
Woods BT, Schaumburg HH. 1972. Nigrospino-dentatal degeneration with nuclear ophthalmoplegia. A unique and partially treatable clinico-pathological entity.J. Neurol. Sci.17(2):149–66
Yazawa I, Nukina N, Hashida H, Goto J, Yamada M, et al. 1995. Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain.Nat. Genet.10:99–103
Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, et al. 1993. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons.Neuropharmacology32(11):1075–88
Zhou ZX, Wong CI, Sar M, Wilson EM. 1994. The androgen receptor: an overview.Recent Prog. Horm. Res.49:249–74
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, et al. 1997. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel.Nat. Genet.15:62–69
Zoghbi HY, Ballabio A. 1995. Spinocerebellar ataxia type 1. InThe Metabolic and Molecular Bases of Inherited Disease,ed. CR Scriver, AL Beaudet, WS Sly, D Valle, pp. 4559–67. New York: McGraw-Hill. 7th ed.