Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agrawal, A.A. and N.S. Kurashige (2003) A role for isothiocyanates in plant resistance against the specialist herbivore <i>Pieris rapae</i>. J. Chem. Ecol. 29: 1403–1415.
Bjerg, B. and H. Sørensen (1987) Quantitative analysis of glucosinolates and HPLC of intact glucosinolates. <i>In</i>: Wathelet, J.-P. (ed.) Glucosinolates in rapeseeds: Analytical aspects, Martinus Nijhoff Publishers, Dordrecht. Netherlands, pp. 125–150.
Bjorkqvist, B. and A. Hase (1988) Separation and determination of intact glucosinolates in rapeseed by high-performance liquid chromatography. J. Chromatogr. 435: 501–507.
Bones, A.M. and J.T. Rossiter (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plantarum 97: 194–208.
Bones, A.M. and J.T. Rossiter (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67: 1053– 1067.
Brader, G., E. Tas and E.T. Palva (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen <i>Erwinia carotovora</i>. Plant Physiol. 126: 849–860.
Carlson, D.G., M.E. Daxenbichler and C.H. Van Etten (1985) Glucosinolate in radish cultivars. J. Amer. Soc. Hort. Sci. 110: 634–638.
Carlson, D.G., M.E. Daxenbichler and C.H. Van Etten (1987) Glucosinolates in crucifer vegetables: broccoli, brussels sprouts, cauliflower, collards, kale, mustard greens, and kohlrabi. J. Amer. Soc. Hort. Sci. 112: 173–178.
Cartea, M.E. and P. Velasco (2008) Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem. Rev. 7: 213–229.
Charron, C.S. and C.E. Sams (2004) Glucosinolate content and myrosinase activity in rapid-cycling <i>Brassica oleracea</i> grown in a controlled environment. J. Amer. Soc. Hort. Sci. 129: 321–330.
Chen, X.J., Z.J. Zhu, X.L. Ni and Q.Q. Qian (2006) Effect of nitrogen and sulfur supply on glucosinolates in <i>Brassica campestris</i> spp. <i>chinensis</i>. Agric. Sci. China 5: 603–608.
Dinkova, A.T., W.D. Holtzciaw, R.N. Cole, K. Itoh, N. Wakabayashi, Y. Katoh, M. Yamamoto and P. Talalay (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99: 11908–11913.
Drewnowski, A. and C. Gomez-Carneros (2000) Bitter taste, phytonutrients, and the consumer: a review. Am. J. Clin. Nutr. 72: 1424– 1435.
Fahey, J.W., A.T. Zalcmann and P. Talalay (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5–51.
Fahey, J.W., K.K. Stephenson, K.L. Wade and P. Talalay (2013) Urease from <i>Helicobacter pylori</i> is inactivated by sulforaphane and other isothioyanates. Biochem. Biophys. Res. Commun. 435: 1–7.
Feng, J., Y. Long, L. Shi, J. Shi, G. Barker and J. Meng (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of <i>Brassica napus</i>. New Phytol. 193: 96–108.
Fenwick, G.R., R.K. Heaney and W.J. Mullin (1983) Glucosinolate and their breakdown products in food and plants. Crit. Rev. Food Sci. Nutr. 18: 123–201.
Foo, H.L., L.M. Gronning, L. Goodenough, A.M. Bones, B.E. Danielsen, D.A. Whiting and J.T. Rossiter (2000) Purification and characterisation of epithiospecifier protein from <i>Brassica napus</i>: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett. 468: 243–246.
Gamet-Payrastre, L., P. Li, S. Lumeau, G. Cassar, M-A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez and F. Tercé (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60: 1426–1433.
Gao, M., G. Li, W. McCombie and C. Quiros (2005) Comparative analysis of a transposon-rich <i>Brassica oleracea</i> BAC clone with its corresponding sequence in <i>A. thaliana</i>. Theor. Appl. Genet. 111: 949–955.
Gao, M., G. Li, B. Yang, D. Qiu, M. Farnham and C. Quiros (2007) High-density <i>Brassica oleracea</i> linkage map: identification of useful new linkages. Theor. Appl. Genet. 115: 277–287.
Gasper, A.V., A. Al-Janobi, J.A. Smith, J.R. Bacon, P. Fortun, C. Atherton, M.A. Taylor, C.J. Hawkey, D.A. Barrett and R.F. Mithen (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am. J. Clin. Nutr. 82: 1283–1291.
Giamoustaris, A. and R. Mithen (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in <i>Brassica oleracea</i>. Theor. Appl. Genet. 93: 1006–1010.
Griffiths, D.W., A.N.E. Birch and J.R. Hillman (1998) Antinutritional compounds in the Brassicaceae: Analysis, biosynthesis, chemistry and dietary effects. J. Hort. Sci. Biotech. 73: 1–18.
Grubb, C.D. and S. Abel (2006) Glucosinolate metabolism and its control. Trends Plant Sci. 11: 89–100.
Halkier, B.A. and J. Gershenzon (2006) Biology and biochemistry of glucosinolates. Ann. Rev. Plant Biol. 57: 303–333.
Hara, M., Y. Fujii, Y. Sasada and T. Kuboi (2000) cDNA cloning of radish (<i>Raphanus sativus</i>) myrosinase and tissue-specific expression in root. Plant Cell Physiol. 41: 1102–1109.
Hara, M., H. Eto and T. Kuboi (2001) Tissue printing for myrosinase activity in roots of turnip and Japanese radish and horseradish: a technique for localizing myrosinases. Plant Sci. 160: 425–431.
Hara, M., A. Harazaki and K. Tabata (2013) Administration of isothiocyanates enhances heat tolerance in <i>Arabidopsis thaliana</i>. Plant Growth Regul. 69: 71–77.
Hasan, M., W. Friedt, J. Pons-Kuhnemann, N.M. Freitag, K. Link and R.J. Snowdon (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (<i>Brassica napus</i> spp. <i>napus</i>). Theor. Appl. Genet. 116: 1035–1049.
Herr, I. and M.W. Büchler (2010) Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat. Rev. 36: 377–383.
Hirani, A.H. (2011) QTL mapping, gene identification and genetic manipulation of glucosinolates in <i>Brassica rapa</i> L. Ph.D. Thesis, University of Manitoba, Canada.
Hirani, A.H., G. Li, C.D. Zelmer, P.B.E. McVetty, M. Asif and A. Goyal (2012) Molecular genetics of glucosinolate biosynthesis in <i>Brassicas</i>: Genetic manipulation and application aspects. <i>In</i>: Goyal, A. (ed.) Crop Plant. DOI: 10.5772/45646. Available from: http://www.intechopen.com/books/crop-plant/molecular-genetics-of-glucosinolate-biosynthesis-in-brassicas
Hopkins, R.J., N.M. van Dam and J.J. van Loon (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54: 57–83.
Husebye, H., S. Chadchawan, P. Winge, O.P. Thangstad and A.M. Bones (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol. 128: 1180–1188.
Ishida, M., T. Kakizaki, T. Ohara and Y. Morimitsu (2011) Development of a simple and rapid extraction method of glucosinolates from radish roots. Breed. Sci. 61: 208–211.
Ishida, M., M. Nagata, T. Ohara, T. Kakizaki, K. Hatakeyama and T. Nishio (2012a) Small variation of glucosinolate composition in Japanese cultivars of radish (<i>Raphanus sativus</i> L.) requires simple quantitative analysis for breeding of glucosinolate component. Breed. Sci. 62: 63–70.
Ishida, M., T. Kakizaki, T. Ohara and Y. Morimitsu (2012b) <i>Raphanus</i> breeding for glucosinolate component. Proceeding of International Symposium Comparative Genomics and Breeding of <i>Brassica</i> Crops. 6.
Ishii, G., R. Saijo and M. Nagata (1989) The difference of glucosinolate content in different cultivar of daikon roots (<i>Raphanus sativus</i> L.). Nippon Shokuhin Kogyo Gakkaishi 36: 739–742.
Issa, R.A. (2010) Identification of glucosinolate profile in <i>Brassica oleracea</i> for quantitative trait locus mapping. Ph.D. Thesis, University of Warwick, England.
Kelly, P.J., A. Bones and J.T. Rossiter (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of <i>Brassica juncea</i>. Planta 206: 370–377.
Kiddle, G., R.N. Bennett, N.P. Botting, N.E. Davidson, A.A.B. Robertson and R.M. Wallsgrove (2001) High-performance liquid chromatographic separation of natural and synthetic desulphoglucosinolates and their chemical validation by UV, NMR and chemical ionisation-MS methods. Phytochem. Anal. 12: 226–242.
Kim, S.J., T. Matsuo, M. Watanabe and Y. Watanabe (2002) Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (<i>Brassica rapa</i> L.). Soil Sci. Plant Nutr. 48: 43–49.
Kim, S.J. and G. Ishii (2007) Effect of storage temperature and duration on glucosinolate, total vitamin C and nitrate contents in rocket salad (<i>Eruca sativa</i> Mill.). J. Sci. Food Agric. 87: 966–973.
Kirkegaard, J.A. and M. Sarwar (1998) Biofumigation potential of brassicas I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201: 71–89.
Kissen, R., J.T. Rossiter and A.M. Bones (2009) The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem. Rev. 8: 69–86.
Kojima, M. and K. Ogawa (1971) Studies of the effects of isothiocyanates and their analogues on microorganisms, (1) Effects of isothiocyanates on the oxygen uptake of yeasts. J. Ferment. Technol. 49: 740–746.
Koroleva, O.A., A. Davies, R. Deeken, M.R. Thorpe, A.D. Tomos and R. Hedrich (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 124: 599–608.
Kostova, A.T.D., J.W. Fahey, K.L. Wade, S.N. Jenkins, T.A. Shapiro, E.J. Fuchs, M.L. Kerns and P. Talalay (2007) Induction of phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol. Biomarkers Prev. 16: 847–851.
LeCoz, C.J. and G. Ducombs (2006) Plants and plant products. <i>In</i>: Frosch, P.J., T. Menne and J.P. Lepottevin (eds.) Contact Dermatitis, 4th ed., Springer Verlag, Berlin-Heidelberg, Germany, pp. 751–800.
Li, G. and C.F. Quiros (2002) Genetic analysis, expression and molecular characterization of <i>BoGSL-ELONG</i>, a major gene involved in the aliphatic glucosinolate pathway of <i>Brassica</i> species. Genetics 162: 1937–1943.
Li, G., M. Gao, B. Yang and C.F. Quiros (2003) Gene to gene alignment between the <i>Brassica</i> and <i>Arabidopsis</i> genomes by transcriptional mapping. Theor. Appl. Genet. 107: 168–180.
Li, G. and C.F. Quiros (2003) In planta side-chain glucosinolate modification in <i>Arabidopsis</i> by introduction of dioxygenase <i>Brassica</i> homolog <i>BoGSL-ALK</i>. Theor. Appl. Genet. 106: 1116–1121.
Lionneton, E., G. Aubert, S. Ochatt and O. Merah (2004) Genetic analysis of agronomic and quality traits in mustard (<i>Brassica juncea</i>). Theor. Appl. Genet. 109: 792–799.
Lou, P., J. Zhao, H. He, C. Hanhart, D. Del Carpio, R. Verkerk, J. Custers, M. Koornneef and G. Bonnema (2008) Quantitative trait loci for glucosinolate accumulation in <i>Brassica rapa</i> leaves. New Phytol. 179: 1017–1032.
Ludwig-Müller, J., P. Krishna and C. Forreiter (2000) A glucosinolate mutant of <i>Arabidopsis</i> is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol. 123: 949–958.
Mahmood, T., U. Ekuere, F. Yeh, A. Good and G. Stringam (2003) Molecular mapping of seed aliphatic glucosinolates in <i>Brassica juncea</i>. Genome 46: 753–760.
Manici, L.M., L. Lazzeri and S. Palmieri (1997) <i>In vitro</i> fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J. Agric. Food Chem. 45: 2768– 2773.
Mellon, F.A., R.N. Bennett, B. Holst and G. Willia (2002) Intact glucosinolate analysis in plant extracts by programmed cone voltage electrospray LC/MS: Performance and comparison with LC/MS/MS methods. Anal. Biochem. 306: 83–91.
Miao, H., J. Wei, Y. Zhao, H. Yan, B. Sun, J. Huang and Q. Wang (2013) Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J Exp. Bot. 64: 1097–1109.
Mithen, R.F., J. Clarke, C. Lister and C. Dean (1995) Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in <i>Arabidopsis thaliana</i>. Heredity 74: 210–215.
Mithen, R.F., M. Dekker, R. Verkerk, S. Rabot and L.T. Johnson (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 80: 967–984.
Mithen, R., K. Faulkner, R. Magrath, P. Rose, G. Williamson and J. Marquez (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor. Appl. Genet. 106: 727–734.
Morimitsu, Y., K. Hayashi, Y. Nakagawa, F. Horio, K. Uchida and T. Osawa (2000) Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, wasabi. BioFactors 13: 271–276.
Morimitsu, Y., Y. Nakagawa, K. Hayashi, H. Fujii, T. Kumagai, Y. Nakamura, T. Osawa, F. Horio, K. Itoh, K. Iida et al. (2002) A sulforaphane analog that potently activates the Nrf2-dependent detoxification pathway. J. Biol. Chem. 277: 3456–3463.
Munday, R., P. Mhawech-Fauceglia, C.M. Munday, J.D. Paonessa, L. Tang, J.S. Munday, C. Lister, P. Wilson, J.W. Fahey, W. Davis et al. (2008) Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res. 68: 1593–1600.
Ozawa, Y., Y. Uda, T. Ohshima, K. Saito and Y. Maeda (1990) Formation of yellow pigment by the reaction of 4-methylthio-3-butenyl isothiocyanate with L-ascorbic acid and some dihydroxyphenolic compounds. Agric. Biol. Chem. 54: 605–611.
Padilla, G., M.E. Cartea, P. Velasco, A. Haro and A. Ordás (2007) Variation of glucosinolates in vegetable crops of <i>Brassica rapa</i>. Phytochemistry 68: 536–545.
Parnaud, G., P. Li, G. Cassar, P. Rouimi, J. Tulliez, L. Combaret and L. Gamet-Payrastre (2004) Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48: 198–206.
Pereira, F.M., E. Rosa, J.W. Fahey, K.K. Stephenson, R. Carvalho and A. Aires (2002) Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (<i>Brassica oleracea</i> var. <i>italica</i>) sprouts and their effect on the induction of mammalian phase 2 enzymes. J Agric. Food Chem. 50: 6239–6244.
Piero, A.R.L., I. Puglisi and G. Petrone (2006) Gene isolation, analysis of expression, and in vitro synthesis of glutathione <i>S</i>-transferase from orange fruit [<i>Citrus sinensis</i> L. (Osbeck)]. J. Agric. Food Chem. 54: 9227–9233.
Quijada, P.A., J.A. Udall, B. Lambert and T.C. Osborn (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (<i>Brassica napus</i> L.): 1. Identification of genomic regions from winter germplasm. Theor. Appl. Genet. 113: 549–561.
Ramchiary, N., N.C. Bisht, V. Gupta, A. Mukhopadhyay, N. Arumugam, Y.S. Sodhi, D. Pental and A.K. Pradhan (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed <i>Brassica juncea</i>: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor. Appl. Genet. 116: 77–85.
Rangkadilok, N., M.E. Nicolas, R.N. Bennett, R.R. Premier, D.R. Eagling and P.W.J. Taylor (2002) Developmental changes of sinigrin and glucoraphenin in three <i>Brassica</i> species (<i>Brassica nigra, Brassica juncea</i> and <i>Brassica oleracea</i> var. Italica). Sci. Hortic. 96: 11–26.
Rask, L., E. Andreasson, B. Ekbom, S. Eriksson, B. Pontoppidan and J. Meijer (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93–113.
Ripley, V.L. and V. Roslinsky (2005) Identification of an ISSR marker for 2-propenyl glucosinolate content in <i>Brassica juncea</i> L. and conversion to a SCAR marker. Mol. Breed. 16: 57–66.
Rosa, E.A.S., R.K. Heaney, G.R. Fenwick and C.A.M. Portas (1997) Glucosinolates in crop plants. Hortic. Rev. 19: 99–125.
Sang, J.P., I.R. Minchinton, P.K. Johnstone and R.J.W. Truscott (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can. J. Plant Sci. 64: 77–93.
Schonhof, I., A. Krumbein and B. Brückner (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung 48: 25–33.
Sønderby, I.E., M. Burow, H.C. Rowe, D.J. Kliebenstein and B.A. Halkier (2010a) Complex interplay of three R<sub>2</sub>R<sub>3</sub> MYB transcription factors determines the profile of aliphatic glucosinolates in <i>Arabidopsis</i>. Plant Physiol. 153: 348–363.
Sønderby, I.E., F. Geu-Flores and B.A. Halkier (2010b) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci. 15: 283–290.
Stoewsand, G.S. (1995) Bioactive organosulfur phytochemicals in <i>Brassica oleracea</i> vegetables—A review. Food Chem. Toxicol. 33: 537–543.
The International Organization for Standardization (1992) Rapeseed-Determination of glucosinolate content. ISO. 9167-1: 1992(2). 1–9.
Thies, W. (1982) Complex-formation between glucosinolates and tetrachloropalladate (II) and its utilization in plant breeding. Fette. Seifen. Anstrichm. 84: 338–342.
Tierens, K.F., B.P. Thomma, M. Brouwer, J. Schmidt, K. Kistner, A. Porzel, B. Mauch-Mani, B.P. Cammue and W.F. Broekaert (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of <i>Arabidopsis</i> to microbial pathogens. Plant Physiol. 125: 1688–1699.
Toroser, D., C. Thormann, T. Osborn and R. Mithen (1995) RFLP mapping of quantitative trait loci controlling seed aliphaticglucosinolate content in oilseed rape (<i>Brassica napus</i> L). Theor. Appl. Genet. 91: 802–808.
Traka, M. and R. Mithen (2009) Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 8: 269–282.
Traka, M., S. Saha, S. Huseby, S. Kopriva, P. Walley, G. Barker, J. Moore, G. Mero, F. van den Bosch, H. Constant et al. (2013) Genetic regulation of glucoraphanin accumulation in Beneforte broccoli. New Phytol. 198: 1085–1095.
Tripathi, M.K. and A.S. Mishra (2007) Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Tech. 132: 1–27.
Uda, Y., H. Matsuoka, H. Kumagami, H. Shima and Y. Maeda (1993) Stability and antimicrobial property of 4-methylthio-3-butenyl isothiocyanate, the pungent principle in radish. Nippon Shokuhin Kogyo Gakkaishi 40: 743–746.
Uzunova, M., W. Ecke, K. Weissleder and G. Röbbelen (1995) Mapping the genome of rapeseed (<i>Brassica napus</i> L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor. Appl. Genet. 90: 194–204.
van Lieshout, E.M., G.H. Posner, B.T. Woodard and W.H. Peters (1998) Effects of sulforaphane analog compound 30, indole-3-carbinol, D-limonene or relafen on glutathione <i>S</i>-transferases and glutathione peroxidase of the rat digestive tract. Biochem. Biophys. Acta 1379: 325–336.
Verkerk, R., M. Schreiner, A. Krumbein, E. Ciska, B. Holst, I. Rowland, R.D. Schrijver, M. Hansen, C. Gerhäuser, R. Mithen et al. (2009) Glucosinolates in <i>Brassica</i> vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 53: S219–S265.
Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng et al. (2011) The genome of the mesopolyploid crop species <i>Brassica rapa</i>. Nat. Genet. 43: 1035–1039.
Watai, Y., A. Kobayashi, H. Nagase, M. Mizukami, J. McEvoy, J.D. Singer, K. Itoh and M. Yamamoto (2007) Subcellular localization and cytoplasmic complex status of endogenous Keap1. Genes Cells 12: 1163–1178.
Whitty, J.P. and L.F. Bjeldanes (1987) The effects of dietary cabbage on xenobiotic-metabolizing enzymes and the binding of aflatoxin B<sub>1</sub> to hepatic DNA in rats. Food Chem. Toxicol. 25: 581–587.
Wiesner, M., R. Zrenner, A. Krumbein, H. Glatt and M. Schreiner (2013) Genotypic variation of the glucosinolate profile in pak choi (<i>Brassica rapa</i> spp. <i>chinensis</i>). J. Agric. Food Chem. 61: 1943– 1953.
Williams, D.J. and S. Pun (2011) Glucosinolates in <i>Brassica</i> vegetables: role in bitterness and hence significance. Food Australia 63: 407–412.
Wu, C.C., L.Y. Sheen, H.W. Chen, W.W. Kuo, S.J. Tsai and C.K. Lii (2002) Differential effects of garlic oil and its three major organosulfur components on the hepatic detoxification system in rats. J. Agric. Food Chem. 50: 378–383.
Yang, B. and C.F. Quiros (2010) Survey of glucosinolate variation in leaves of <i>Brassica rapa</i> crops. Genet. Resour. Crop Evol. 57: 1079–1089.
Zhang, Y., P. Talalay, C.-G. Cho and G.H. Posner (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA 89: 2399– 2403.
Zhang, Y., R. Munday, H.E. Jobson, C.M. Munday, C. Lister, P. Wilson, J.W. Fahey and P.M. Fauceglia (2006) Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (<i>Brassica oleracea italica</i>) sprouts. J. Agric. Food Chem. 54: 9370–9376.
Zang, Y.X., H.U. Kim, J.A. Kim, M.H. Lim, M. Jin, S.C. Lee, S.J. Kwon, S.I. Lee, J.K. Hong, T.H. Park et al. (2009) Genome-wide identification of glucosinolate synthesis genes in <i>Brassica rapa</i>. FEBS J. 276: 3559–3574.
Zhao, J. and J. Meng (2003) Detection of loci controlling seed glucosinolate content and their association with <i>Sclerotinia</i> resistance in <i>Brassica napus</i>. Plant Breed. 122: 19–23.
Zou, Z., M. Ishida, F. Li, T. Kakizaki, S. Suzuki, H. Kitashiba and T. Nishio (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, <i>Raphanus sativus</i> L. PLoS One 8: e53541.