Glucose attenuation of scopolamine- and age-induced deficits in spontaneous alternation behavior and regional brain [3H]2-deoxyglucose uptake in mice

Springer Science and Business Media LLC - Tập 20 Số 4 - Trang 270-279 - 1992
William S. Stone1, Rebecca J. Rudd1, Paul E. Gold1
1Department of Psychology, University of Virginia, Gilmer Hall, Charlottesville, Virginia, 22903, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beninger, R. J., Jhamandas, K., Boegman, R. J., & El-Defrawy, S. R. (1986). Effects of scopolamine and unilateral lesions of the basal forebrain on T-maze spatial discrimination and alternation in rats. Pharmacology, Biochemistry, & Behavior, 24, 1353–1360.

Beracochea, D. J., & Jaffard, R. (1990). Effects of ibotenic lesions of mammillary bodies on spontaneous and rewarded spatial alternation in mice. Journal of Cognitive Neuroscience, 2, 133–140.

Bushnell, P. J. (1987). Effects of scopolamine on locomotor activity and metabolic rate in mice. Pharmacology, Biochemistry, & Behavior, 26, 195–198.

Dam, M., & London, E. D. (1984). Glucose utilization in the Papez circuit: Effects of oxotremorine and scopolamine. Brain Research, 295, 137–144.

Dam, M., Wamsley, J. K., Rapoport, S. I., & London, E. D. (1982). Effects of oxotremorine on local glucose utilization in the rat cerebral cortex. Journal of Neuroscience, 2, 1072–1078.

Douglas, R. J., & Isaacson, R. L. (1966). Spontaneous alternation and scopolamine. Psychonomic Science, 4, 283–284.

Dow-Edwards, D., Dam, M., Peterson, J. M., Rapoport, S. I., & London, E. D. (1981). Effect of oxotremorine on local cerebral glucose utilization in motor system regions of the rat brain. Brain Research, 226, 281–289.

Drachman, D. A. (1977). Memory and cognitive function in man: Does the cholinergic system have a specific role? Neurology, 27, 783–790.

Egger, G. J., Livesey, P. J., & Dawson, R. G. (1973). Ontogenetic aspects of central cholinergic involvement in spontaneous alternation behavior. Developmental Psychobiology, 6, 289–299.

Friedman, H. R., & Goldman-Rakic, P. S. (1988). Activation of the hippocampus and dentate gyrus by working memory: A 2-deoxyglucose study of behaving rhesus monkeys. Journal of Neuroscience, 8, 4693–4706.

Friedman, H. R., Janas, J. D., & Goldman-Rakic, P. S. (1990). Enhancement of metabolic activity in the diencephalon of monkeys performing working memory tasks: A 2-deoxyglucose study in behaving rhesus monkeys. Journal of Cognitive Neuroscience, 2, 18–31.

Gold, P. E. (1986). Glucose modulation of memory storage processing. Behavioral & Neural Biology, 45, 342–349.

Gold, P. E. (1991). An integrated memory system: From blood to brain. In R. C. A. Frederickson, J. L. McGaugh, & D. L. Felton (Eds.), Peripheral signaling of the brain: Role in neural-immune interactions, learning and memory (pp. 391–419). Toronto: Hogrefe & Huber.

Gold, P. E., & Stone, W. S. (1988). Neuroendocrine effects on memory in aged rodents and humans. Neurobiology of Aging, 9, 709–717.

Gold, P. E., Vogt, J., & Hall, J. L. (1986). Posttraining glucose effects on memory: Behavioral and pharmacological characteristics. Behavioral & Neural Biology, 46, 145–155.

Gonzalez-Lima, F., Finkenstadt, T., & Ewert, J. P. (1989). Learning-related activation in the auditory system of the rat produced by long-term habituation: A 2-deoxyglucose study. Brain Research, 489, 67–79.

Hall, J. L., & Gold, P. E. (1986). The effects of training, epinephrine and glucose injections on plasma glucose levels in rats. Behavioral & Neural Biology, 46, 156–167.

Hall, J. L., & Gold, P. E. (in press). Plasma glucose levels predict the susceptibility of memory enhancement to disruption by adrenergic antagonists. European Journal of Pharmacology.

Hall, J. L., Gonder-Frederick, L. A., Chewning, W. W., Silveira, J., & Gold, P. E. (1989). Glucose enhancement of memory in young and aged humans. Neuropsychologia, 27, 1129–1138.

Helen, P., & London, E. D. (1984). Muscimol-scopolamine interactions in the rat brain: A study with 2-deoxy-D-[1-14C]glucose. Journal of Neuroscience, 4, 1405–1413.

Honer, W. G., Prohovnik, I., Smith, G., & Lucas, L. R. (1988). Scopolamine reduces frontal cortex perfusion. Journal of Cerebral Blood Flow & Metabolism, 8, 635–641.

Horster, W., Rivers, A., Schuster, B., Ettlinger, G., Skreczez, W., & Hesse, W. (1989). The neural structures involved in cross-modal recognition and tactile discrimination performance: An investigation using 2-DG. Behavioral Brain Research, 33, 209–227.

Lee, M. K., Graham, S., & Gold, P. E. (1988). Memory enhancement with posttraining intraventricular glucose injections in rats. Behavioral Neuroscience, 102, 591–595.

London, E. D., Nespor, S. M., Ohata, M., & Rapoport, S. I. (1981). Local cerebral glucose utilization during development and aging of the Fischer-344 rat. Journal of Neurochemistry, 37, 217–221.

Long, J. M., Davis, B. J., Garofalo, P., Spangler, E. L., & Ingram, D. K. (1992). Complex maze performance in young and aged rats: Response to glucose treatment and relationship to blood insulin and glucose. Physiology & Behavior, 51, 411–418.

Manning, C. A., Hall, J. L., & Gold, P. E. (1990). Memory facilitation by glucose in aged humans. Psychological Science, 1, 307–311.

Martinez, J. L., Petty, C., & Messing, R. B. (1982). Regional brain uptake of 2-deoxy-d-glucose following treatment in a discriminated Y-maze avoidance task. Journal of Comparative & Physiological Psychology, 96, 721–724.

Means, L. W., & Fernandez, T. J. (1992). Daily glucose injections facilitate performance of a win-stay water-escape working memory task in mice. Behavioral Neuroscience, 106, 345–350.

Messier, C., & Destrade, C. (1988). Improvement of memory for an operant response by post-training glucose in mice. Behavioral Brain Research, 31, 185–191.

Messier, C., & White, N. M. (1984). Contingent and non-contingent actions of sucrose and saccharin reinforcers: Effects on taste preference and memory. Physiology & Behavior, 32, 195–203.

Messier, C., & White, N. M. (1987). Memory improvement by glucose, fructose and two glucose analogs: An effect on glucose transport. Behavioral & Neural Biology, 48, 104–127.

Myers, B., & Domino, E. F. (1964). The effect of cholinergic blocking drugs on spontaneous alternation in rats. Archives of International Pharmacodynamics & Therapeutics, 150, 525–529.

Olton, D. S. (1983). Memory functions and the hippocampus. In W. Seifert (Ed.), Neurobiology of the hippocampus (pp. 335–373). New York: Academic Press.

Orzi, F., Lucignani, D., Dow-Edwards, D., Namba, H., Nehlig, A., Patlak, C. S., Pettigrew, K., Schuier, F., & Sokoloff, L. (1988). Local cerebral glucose utilization in controlled graded levels of hyperglycemia in the conscious rat. Journal of Cerebral Blood Flow & Metabolism, 8, 346–356.

Parmacek, M. S., Fox, J. H., Harrison, W. H., Garron, D. C., & Swenie, D. (1979). Effect of aging on brain respiration and carbohydrate metabolism of CBF1 mice. Gerontology, 25, 185–191.

Parsons, M. W., & Gold, P. E. (1992). Scopolamine-induced deficits in spontaneous alternation performance: Attenuation with lateral ventricle injections of glucose. Behavioral & Neural Biology, 57, 90–92.

Piercy, M. F., Vogelsang, G. D., Franklin, S. R., & Tang, S. H. (1987). Reversal of scopolamine-induced amnesia and alterations in energy metabolism by the nootropic piracetam: Implications regarding identification of brain structures involved in consolidation of memory traces. Brain Research, 424, 1–9.

Rawlins, J. N. P. (1985). Associations across time: The hippocampus as a temporary memory. Behavioral & Brain Sciences, 8, 479–495.

Sarter, M., Bodewitz, G., & Steckler, T. (1989). 2-[3H]deoxyglucose uptake patterns in rats exploring a six-arm radial tunnel maze: Differences between experienced and nonexperienced rats. Behavioral Neuroscience, 103, 1217–1225.

Sarter, M., Bodewitz, G., & Stephens, D. N. (1988). Attenuation of scopolamine-induced impairment of spontaneous alternation behavior by antagonist but not inverse agonist and agonist b-carbolines. Psychopharmacology, 94, 491–495.

Scremin, O. U., Allen, K., Torres, C., & Scremin, A. M. (1988). Physostigmine enhances blood flow — metabolism ratio in neocortex. Neuropsychopharmacology, 1, 297–303.

Sif, J., Messier, C., Meunier, M., Bontempi, B., Calas, A., & Destrade, C. (1991). Time-dependent sequential increases in [14C]2-deoxyglucose uptake in subcortical and cortical structures during memory consolidation of an operant training in mice. Behavioral & Neural Biology, 56, 43–61.

Smith, C. B., Goochee, C., Rapoport, S. I., & Sokoloff, L. (1980). Effects of aging on local rates of cerebral glucose utilization in the rat. Brain, 103, 351–365.

Smith, M. L., & Milner, B. (1981). The role of the right hippocampus in the recall of spatial information. Neuropsychologia, 19, 781–793.

Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., & Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. Journal of Neurochemistry, 28, 897–916.

Soncrant, T. T., Holloway, H. W., & Rapoport, S. I. (1985). Arecoline-induced elevations of regional cerebral metabolism in the conscious rat. Brain Research, 347, 205–216.

Spencer, D. G., & Lal, H. (1983). Effects of anticholinergic drugs on learning and memory. Drug Development & Research, 3, 489–502.

Spencer, D. G., Pontecorvo, M. J., & Heise, G. A. (1985). Central cholinergic involvement in working memory: Effects of scopolamine on continuous nonmatching and discrimination performance in the rat. Behavioral Neuroscience, 99, 1049–1065.

Squire, L. R. (1969). Effects of pretrial and posttrial administration of cholinergic and anticholinergic drugs on spontaneous alternation. Journal of Comparative & Physiological Psychology, 69, 69–75.

Stone, W. S., Cottrill, K. L., & Gold, P. E. (1987). Glucose and epinephrine attenuation of scopolamine-induced increases in locomotor activity in mice. Neuroscience Research Communications, 1, 105–111.

Stone, W. S., Cottrill, K. L., Walker, D. L., & Gold, P. E. (1988). Blood glucose and brain function: Interactions with CNS cholinergic systems. Behavioral & Neural Biology, 50, 325–334.

Stone, W. S., Croul, C. E., & Gold, P. E. (1988). Attenuation of scopolamine-induced amnesia in mice. Psychopharmacology, 96, 417–420.

Stone, W. S., Manning, C. A., & Gold, P. E. (1989). Relationships between circulating glucose levels and memory storage processes. In H. J. Altman & B. N. Altman (Eds.), Alzheimer’s and Parkinson’s disease: Recent advances in research and clinical management (pp. 167–189). New York: Plenum.

Stone, W. S., Rudd, R. J., & Gold, P. E. (1990). Glucose and physostigmine effects on morphine- and amphetamine-induced increases in locomotor activity in mice. Behavioral & Neural Biology, 54, 146–155.

Stone, W. S., Rudd, R. J., & Gold, P. E. (1992). Glucose attenuation of atropine-induced deficits in paradoxical sleep and memory in rats. Manuscript in preparation.

Stone, W. S., Walser, B., Gold, S. D., & Gold, P. E. (1991). Morphine- and scopolamine-induced impairments of spontaneous alternation in mice: Reversal with glucose and with cholinergic and adrenergic agonists. Behavioral Neuroscience, 105, 264–271.

Stone, W. S., Wenk, G. L., Stone, S. M., & Gold, P. E. (1992). Glucose attenuation of paradoxical sleep deficits in old rats. Behavioral & Neural Biology, 57, 79–86.

Tröster, A. L., Beatty, W. W., Staton, R. D., & Rorabaugh, A. G. (1989). Effects of scopolamine on anterograde and remote memory in humans. Psychobiology, 17, 12–18.

Warburton, D. M., & Heise, G. A. (1972). Effects of scopolamine on spatial double alternation in rats. Journal of Comparative & Physiological Psychology, 81, 523–532.

Weinberger, J., Greenberg, J. H., Waldman, M. T. G., Sylvestro, A., and Reivich, M. (1979). The effect of scopolamine on local glucose metabolism in rat brain. Brain Research, 177, 337–345.

Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1986). Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience, 6, 2950–2967.

Zornetzer, S. F. (1984). Brain substrates of senescent memory decline. In L. R. Squire & N. Butters (Eds.), Neuropsychology of memory (pp. 588–600). New York: Guilford.