Glucocorticoids and fetal programming part 2: mechanisms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barker, D. J. & Thornburg, K. L. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta 34, 841–845 (2013).
Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 1: outcomes. Nat. Rev. Endocrinol. http://dx.doi.org/10.1038/nrendo.2014.73.
McCabe, L., Marash, D., Li, A. & Matthews, S. G. Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J. Neuroendocrinol. 13, 425–431 (2001).
Chapman, K., Holmes, M. & Seckl, J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol. Rev. 93, 1139–1206 (2013).
Dauprat, P., Monin, G., Dalle, M. & Delost, P. The effects of psychosomatic stress at the end of pregnancy on maternal and fetal plasma cortisol levels and liver glycogen in guinea-pigs. Reprod. Nutr. Dev. 24, 45–51 (1984).
Challis, J. R. G., Matthews, S. G., Gibb, W. & Lye, S. J. Endocrine and paracrine regulation of birth at term and preterm. Endocr. Rev. 21, 514–550 (2000).
Sun, M. et al. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta 27, 602–609 (2006).
Iqbal, M., Audette, M. C., Petropoulos, S., Gibb, W. & Matthews, S. G. Placental drug transporters and their role in fetal protection. Placenta 33, 137–142 (2012).
Yates, C. R. et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm. Res. 20, 1794–1803 (2003).
Iqbal, M., Gibb, W. & Matthews, S. G. Corticosteroid regulation of P-glycoprotein in the developing blood–brain barrier. Endocrinology 152, 1067–1079 (2011).
Torricelli, M. et al. Changes in placental CRH, urocortins, and CRH-receptor mRNA expression associated with preterm delivery and chorioamnionitis. J. Clin. Endocrinol. Metab. 96, 534–540 (2011).
Braun, T., Challis, J. R., Newnham, J. P. & Sloboda, D. M. Early life glucocorticoid exposure: the hypothalamic pituitary adrenal axis, placental function and long term disease risk. Endocr. Rev. 34, 885–916 (2013).
Clifton, V. L. Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31 (Suppl.), S33–S39 (2010).
Matthews, S. G. Antenatal glucocorticoids and programming of the developing CNS. Pediatr. Res. 47, 291–300 (2000).
Sapolsky, R. M. The physiological relevance of glucocorticoid endangerment of the hippocampus. Ann. NY Acad. Sci. 746, 294–304 (1994).
Kapoor, A., Petropoulos, S. & Matthews, S. G. Fetal programming of hypothalamic–pituitary–adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res. Rev. 57, 586–595 (2008).
Andrews, M. H. & Matthews, S. G. Regulation of glucocorticoid receptor mRNA and heat shock protein 70 mRNA in the developing sheep brain. Brain Res. 878, 174–182 (2000).
Krozowski, Z. S. & Funder, J. W. Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc. Natl Acad. Sci. USA 80, 6056–6060 (1983).
Jones, S. A. et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol. Endocrinol. 14, 27–39 (2000).
Fowden, A. L., Li, J. & Forhead, A. J. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc. Nutr. Soc. 57, 113–122 (1998).
Meaney, M. J. et al. Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J. Neurosci. 20, 3926–3935 (2000).
Guo, C., Li, C., Myatt, L., Nathanielsz, P. W. & Sun, K. Sexually dimorphic effects of maternal nutrient reduction on expression of genes regulating cortisol metabolism in fetal baboon adipose and liver tissues. Diabetes 62, 1175–1185 (2013).
Hasan, K. M., Rahman, M. S., Arif, K. M. & Sobhani, M. E. Psychological stress and aging: role of glucocorticoids (GCs). Age (Dordr.) 34, 1421–1433 (2012).
Yau, J. L., Noble, J. & Seckl, J. R. 11β-hydroxysteroid dehydrogenase type 1 deficiency prevents memory deficits with aging by switching from glucocorticoid receptor to mineralocorticoid receptor-mediated cognitive control. J. Neurosci. 31, 4188–4193 (2011).
Qiu, G. et al. Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids. Neurobiol. Aging 33, 2398–2410 (2012).
Epel, E. S. et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav. Immun. 24, 531–539 (2010).
Choi, J., Fauce, S. R. & Effros, R. B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 22, 600–605 (2008).
Haussmann, M. F., Longenecker, A. S., Marchetto, N. M., Juliano, S. A. & Bowden, R. M. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proc. Biol. Sci. 279, 1447–1456 (2012).
Kapoor, A. & Matthews, S. G. Short periods of prenatal stress affect growth, behaviour and hypothalamo–pituitary–adrenal axis activity in male guinea pig offspring. J. Physiol. 566, 967–977 (2005).
Kapoor, A., Leen, J. & Matthews, S. G. Molecular regulation of the hypothalamic–pituitary–adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation. J. Physiol. 586, 4317–4326 (2008).
Weaver, I. C. et al. Epigenetic programming by maternal behaviour. Nat. Neurosci. 7, 847–854 (2004).
Newell-Price, J. Proopiomelanocortin gene expression and DNA methylation: implications for Cushing's syndrome and beyond. J. Endocrinol. 177, 365–372 (2003).
Alikhani-Koopaei, R., Fouladkou, F., Frey, F. J. & Frey, B. M. Epigenetic regulation of 11 β-hydroxysteroid dehydrogenase type 2 expression. J. Clin. Invest. 114, 1146–1157 (2004).
Mueller, B. R. & Bale, T. L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008).
Oberlander, T. F. et al. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3, 97–106 (2008).
De Filippis, B., Ricceri, L., Fuso, A. & Laviola, G. Neonatal exposure to low dose corticosterone persistently modulates hippocampal mineralocorticoid receptor expression and improves locomotor/exploratory behaviour in a mouse model of Rett syndrome. Neuropharmacology 68, 174–183 (2012).
Youngson, N. A. & Morris, M. J. What obesity research tells us about epigenetic mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110337 (2013).
Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).
Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).
Crudo, A. et al. Prenatal synthetic glucocorticoid treatment changes DNA methylation States in male organ systems: multigenerational effects. Endocrinology 153, 3269–3283 (2012).
Drake, A. J. et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and fetal growth. Clin. Endocrinol. (Oxf.) 77, 808–815 (2012).
Begum, G. et al. Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology 154, 4560–4569 (2013).
McGowan, P. O. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348 (2009).
Zhang, T. Y., Labonté, B., Wen, X. L., Turecki, G. & Meaney, M. J. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38, 111–123 (2013).
Labonte, B. et al. Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biol. Psychiatry 72, 41–48 (2012).
Zucchi, F. C. et al. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE 8, e56967 (2013).
Monteleone, M. C. et al. Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain. Epigenetics 9, 152–160 (2013).
Jensen Peña, C., Monk, C. & Champagne, F. A. Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS ONE 7, e39791 (2012).
Mulligan, C. J., D'Errico, N. C., Stees, J. & Hughes, D. A. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics 7, 853–857 (2012).
Thomassin, H., Flavin, M., Espinás, M. L. & Grange, T. Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J. 20, 1974–1983 (2001).
Crudo, A. et al. Glucocorticoid programming of the fetal male hippocampal epigenome. Endocrinology 154, 1168–1180 (2013).
Crudo, A. et al. Effects of antenatal synthetic glucocorticoid on glucocorticoid receptor binding, DNA methylation, and genome-wide mRNA levels in the fetal male hippocampus. Endocrinology 154, 4170–4181 (2013).
Hochberg, Z. et al. Child health, developmental plasticity, and epigenetic programming. Endocr. Rev. 32, 159–224 (2011).
Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A. & Burdge, G. C. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr. 135, 1382–1386 (2005).
Weaver, I. C. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 25, 11045–11054 (2005).
Saluz, H. P., Jiricny, J. & Jost, J. P. Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc. Natl Acad. Sci. USA 83, 7167–7171 (1986).
Terzolo, M. et al. Hyperhomocysteinemia in patients with Cushing's syndrome. J. Clin. Endocrinol. Metab. 89, 3745–3751 (2004).
James, S. J., Melnyk, S., Pogribna, M., Pogribny, I. P. & Caudill, M. A. Elevation in S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology. J. Nutr. 132, 2361S–2366S (2002).
Chang, P. Y. et al. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ. Res. 102, 933–941 (2008).
Forhead, A. J. et al. Differential effects of maternal dexamethasone treatment on circulating thyroid hormone concentrations and tissue deiodinase activity in the pregnant ewe and fetus. Endocrinology 148, 800–805 (2007).
Andrews, M. H. et al. Developmental regulation of the 5-HT7 serotonin receptor and transcription factor NGFI-A in the fetal guinea-pig limbic system: influence of GCs. J. Physiol. 555, 659–670 (2004).
Wyrwoll, C. S., Kerrigan, D., Holmes, M. C., Seckl, J. R. & Drake, A. J. Altered placental methyl donor transport in the dexamethasone programmed rat. Placenta 33, 220–223 (2012).
Jiang, X. et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 26, 3563–3574 (2012).
Abdolmaleky, H. M. et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet. 15, 3132–3145 (2006).
Abdolmaleky, H. M. et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr. Res. 129, 183–190 (2011).
Ghadirivasfi, M. et al. Hypomethylation of the serotonin receptor type-2A gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 536–545 (2011).
Nohesara, S. et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J. Psychiatr. Res. 45, 1432–1438 (2011).
Yehuda, R. et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front. Psychiatry 4, 118 (2013).
Jung, C. et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 96, 1533–1540 (2011).
Kammerer, M., Adams, D., Castelberg, B. V. & Glover, V. Pregnant women become insensitive to cold stress. BMC Pregnancy Childbirth 2, 8 (2002).
Champagne, F. A. & Meaney, M. J. Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol. Psychiatry 59, 1227–1235 (2006).
Bohacek, J., Gapp, K., Saab, B. J. & Mansuy, I. M. Transgenerational epigenetic effects on brain functions. Biol. Psychiatry 73, 313–320 (2013).
Daxinger, L. & Whitelaw, E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162 (2012).
Padmanabhan, N. et al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81–93 (2013).
Anway, M. D., Memon, M. A., Uzumcu, M. & Skinner, M. K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl. 27, 868–879 (2006).
Crews, D. et al. Epigenetic transgenerational inheritance of altered stress responses. Proc. Natl Acad. Sci. USA 109, 9143–9148 (2012).
Morgan, C. P. & Bale, T. L. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J. Neurosci. 31, 11748–11755 (2011).
Dunn, G. A., Morgan, C. P. & Bale, T. L. Sex-specificity in transgenerational epigenetic programming. Horm. Behav. 59, 290–295 (2011).