Glucocorticoid receptor-dependent induction of cripto-1 (one-eyed pinhead) inhibits zebrafish caudal fin regeneration
Tài liệu tham khảo
Tal, 2010, Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish – a mini-review, Gerontology, 56, 231, 10.1159/000259327
Iovine, 2007, Conserved mechanisms regulate outgrowth in zebrafish fins, Nat. Chem. Biol., 3, 613, 10.1038/nchembio.2007.36
Jazwinska, 2007, Activin-betaA signaling is required for zebrafish fin regeneration, Curr. Biol., 17, 1390, 10.1016/j.cub.2007.07.019
Kawakami, 2004, Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration, Dev. Dyn., 231, 693, 10.1002/dvdy.20181
Mathew, 2009, Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration, J. Biol. Chem., 284, 33642, 10.1074/jbc.M109.011668
Mathew, 2007, Unraveling tissue regeneration pathways using chemical genetics, J. Biol. Chem., 282, 35202, 10.1074/jbc.M706640200
Mathew, 2008, Crosstalk between AHR and Wnt signaling through R-Spondin1 impairs tissue regeneration in zebrafish, FASEB J., 22, 3087, 10.1096/fj.08-109009
Weikum, 2017, Glucocorticoid receptor control of transcription: precision and plasticity via allostery, Nat. Rev. Mol. Cell Biol., 18, 159, 10.1038/nrm.2016.152
Dallman, 1993, Feast and famine: critical role of glucocorticoids with insulin in daily energy flow, Front. Neuroendocrinol., 14, 303, 10.1006/frne.1993.1010
Cain, 2017, Immune regulation by glucocorticoids, Nat. Rev. Immunol., 17, 233, 10.1038/nri.2017.1
Bird, 2015, Glucocorticoid regulation of lung development: lessons learned from conditional GR knockout mice, Mol. Endocrinol., 29, 158, 10.1210/me.2014-1362
Jozic, 2017, Stress signals, mediated by membranous glucocorticoid receptor, activate PLC/PKC/GSK-3beta/beta-catenin pathway to inhibit wound closure, J. Invest. Dermatol., 137, 1144, 10.1016/j.jid.2016.11.036
Sengupta, 2012, Alternate glucocorticoid receptor ligand binding structures influence outcomes in an in vivo tissue regeneration model, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 156, 121, 10.1016/j.cbpc.2012.05.003
Schier, 2009, Nodal morphogens, Cold Spring Harb. Perspect. Biol., 1, a003459, 10.1101/cshperspect.a003459
Gray, 2003, Cripto forms a complex with activin and type II activin receptors and can block activin signaling, Proc. Natl. Acad. Sci. U. S. A., 100, 5193, 10.1073/pnas.0531290100
Gray, 2006, Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling, Mol. Cell. Biol., 26, 9268, 10.1128/MCB.01168-06
Gritsman, 1999, The EGF-CFC protein one-eyed pinhead is essential for nodal signaling, Cell, 97, 121, 10.1016/S0092-8674(00)80720-5
Feldman, 2001, Morpholino phenocopies of sqt, oep, and ntl mutations, Genesis, 30, 175, 10.1002/gene.1058
Strizzi, 2005, Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis, Oncogene, 24, 5731, 10.1038/sj.onc.1208918
Ciccodicola, 1989, Molecular characterization of a gene of the’ EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells, EMBO J., 8, 1987, 10.1002/j.1460-2075.1989.tb03605.x
Westerfield, 2000
Mathew, 2006, Aryl hydrocarbon receptor activation inhibits regenerative growth, Mol. Pharmacol., 69, 257, 10.1124/mol.105.018044
Poss, 2002, Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration, Development, 129, 5141, 10.1242/dev.129.22.5141
Genschow, 2004, Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests, Altern. Lab. Anim., 32, 209, 10.1177/026119290403200305
Cartharius, 2005, MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, 21, 2933, 10.1093/bioinformatics/bti473
Wang, 2004, Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes, Proc. Natl. Acad. Sci. U. S. A., 101, 15603, 10.1073/pnas.0407008101
Phuc Le, 2005, Glucocorticoid receptor-dependent gene regulatory networks, PLoS Genet., 1, e16, 10.1371/journal.pgen.0010016
Callahan, 2002, Identification of novel inhibitors of the transforming growth factor beta 1 (TGF-beta 1) type 1 receptor (ALK5), J. Med. Chem., 45, 999, 10.1021/jm010493y
Laping, 2002, Inhibition of transforming growth factor (TGF)-beta 1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542, Mol. Pharmacol., 62, 58, 10.1124/mol.62.1.58
Inman, 2002, SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7, Mol. Pharmacol., 62, 65, 10.1124/mol.62.1.65
Schebesta, 2006, Transcriptional profiling of caudal fin regeneration in zebrafish, Transfus. Apher. Sci., 6, 38
Chatzopoulou, 2016, Glucocorticoid-induced attenuation of the inflammatory response in zebrafish, Endocrinology, 157, 2772, 10.1210/en.2015-2050
Bianco, 2010, Role of Cripto-1 in stem cell maintenance and malignant progression, Am. J. Pathol., 177, 532, 10.2353/ajpath.2010.100102
Rangel, 2012, Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer, Am. J. Pathol., 180, 2188, 10.1016/j.ajpath.2012.02.031
Zhou, 1993, Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation, Nature, 361, 543, 10.1038/361543a0
Rangel, 2016, Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer, Breast Cancer Res. Treat., 156, 211, 10.1007/s10549-016-3746-7
Bianco, 2006, Identification of Cripto-1 as a novel serologic marker for breast and colon cancer, Clin. Cancer Res., 12, 5158, 10.1158/1078-0432.CCR-06-0274
Yoon, 2011, The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma, Oral Oncol., 47, 1023, 10.1016/j.oraloncology.2011.07.019
Zhang, 2017, Clinical significance of cripto-1 expression in lung adenocarcinoma, Oncotarget, 8, 79087, 10.18632/oncotarget.15761
Klauzinska, 2014, The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition, Semin. Cancer Biol., 29, 51, 10.1016/j.semcancer.2014.08.003
Poss, 2000, Roles for Fgf signaling during zebrafish fin regeneration, Dev. Biol. (Basel), 222, 347, 10.1006/dbio.2000.9722
Kawakami, 2006, Wnt/beta-catenin signaling regulates vertebrate limb regeneration, Genes Dev., 20, 3232, 10.1101/gad.1475106
Shani, 2008, GRP78 and cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth, Mol. Cell. Biol., 28, 666, 10.1128/MCB.01716-07
Yeo, 2001, Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms, Mol. Cell, 7, 949, 10.1016/S1097-2765(01)00249-0
Kelber, 2008, Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal, J. Biol. Chem., 283, 4490, 10.1074/jbc.M704960200
Nagaoka, 2013, Cripto-1 enhances the canonical Wnt/β-catenin signaling pathway by binding to LRP5 and LRP6 co-receptors, Cell. Signal., 25, 178, 10.1016/j.cellsig.2012.09.024
Bianco, 2003, A Nodal- and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src, Cancer Res., 63, 1192
Watanabe, 2009, Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1, J. Cell Biol., 187, 343, 10.1083/jcb.200905105
Nagaoka, 2012, An evolving web of signaling networks regulated by Cripto-1, Growth Factors, 30, 13, 10.3109/08977194.2011.641962
Hoover, 2019, Identification of myosin II as a cripto binding protein and regulator of cripto function in stem cells and tissue regeneration, Biochem. Biophys. Res. Commun., 509, 69, 10.1016/j.bbrc.2018.12.059
Hentschke, 2006, Germ cell nuclear factor is a repressor of CRIPTO-1 and CRIPTO-3, J. Biol. Chem., 281, 33497, 10.1074/jbc.M606975200
Walker, 2015, Non-human primate and rodent embryonic stem cells are differentially sensitive to embryotoxic compounds, Toxicol. Rep., 2, 165, 10.1016/j.toxrep.2014.11.016
Xu, 1998, Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1, Dev. Biol., 196, 237, 10.1006/dbio.1998.8862
Parisi, 2003, Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells, J. Cell Biol., 163, 303, 10.1083/jcb.200303010