Global well-posedness for the Benjamin equation in low regularity

Nonlinear Analysis, Theory, Methods and Applications - Tập 73 - Trang 1610-1625 - 2010
Yongsheng Li1, Yifei Wu1
1Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, PR China

Tài liệu tham khảo

Benjamin, 1967, Internal waves of permanent form in fluids of certain lattice subsets and applications to nonlinear equations, J. Fluid. Mech., 29, 559, 10.1017/S002211206700103X Gleeson, 2007, A new application of the Korteweg–de Vries Benjamin-Ono equation in interfacial electrohydrodynamics, Phys. Fluids, 19, 031703, 10.1063/1.2716763 Linares, 1999, Global well-posedness of the initial value problem associated with the Benjamin equation, J. Differential Equations, 152, 1425, 10.1006/jdeq.1998.3530 Kozono, 2001, Well-posedness for the Benjamin equations, J. Korean Math. Soc., 38, 1205 Bourgain, 1993, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. the KdV equation, Geom. Funct. Anal., 3, 209, 10.1007/BF01895688 Kenig, 1996, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9, 573, 10.1090/S0894-0347-96-00200-7 W. Chen, J. Xiao, A sharp bilinear estimate for the Bourgain-type space with application to the Benjamin equation, arXiv:0908.3429. Guo, 2006, The global attractor of the damped, forced generalized Korteweg de Vries–Benjamin-Ono equation in L2, Discrete Contin. Dyn. Syst., 16, 121, 10.3934/dcds.2006.16.121 Guo, 2004, The well-posedness of the Korteweg–de Vries–Benjamin-Ono equation, J. Math. Anal. Appl., 295, 444, 10.1016/j.jmaa.2004.02.043 Colliander, 2002, A refined global well-posedness result for Schrödinger equations with derivatives, SIAM J. Math. Anal., 34, 64, 10.1137/S0036141001394541 Colliander, 2003, Sharp global well-posedness for KdV and modified Kdv on R and T, J. Amer. Math. Soc., 16, 705, 10.1090/S0894-0347-03-00421-1 Pecher, 2005, The Cauchy problem for a Schrödinger korteweg-de Vries system with rough data, Diff. Int. Eqns., 18, 1147 A. Grünrock, New applications of the Fourier restriction norm method to well-posedness problems for nonlinear evolution equations, Dissertation, University of Wuppertal, 2002. Kenig, 1991, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40, 33, 10.1512/iumj.1991.40.40003 Kenig, 1993, The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indics, Duke Math. J., 71, 1, 10.1215/S0012-7094-93-07101-3 Colliander, 2003, Local well-posedness for dispersion generalized Benjamin-Ono equations, Differential Integral Equations, 16, 1441, 10.57262/die/1356060496 Colliander, 2004, Multilinear estimates for periodic KdVequations, and applications, J. Funct. Anal., 211, 173, 10.1016/S0022-1236(03)00218-0 Bambusi, 2007, Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math., 60, 1665, 10.1002/cpa.20181 Bourgain, 2004, Remark on normal forms and the I-method for periodic NLS, J. Anal. Math., 94, 127, 10.1007/BF02789044 Colliander, 2008, Resonant decompositions and the I-method for cubic nonlinear Schrödinger on R2, Discrete Contin. Dyn. Syst., 21, 665, 10.3934/dcds.2008.21.665