Global warming and changes in drought

Nature Climate Change - Tập 4 Số 1 - Trang 17-22 - 2014
Kevin E. Trenberth1, Aiguo Dai2,1, Gerard van der Schrier3,4, Phil Jones4,5, Jonathan Barichivich4,6, Keith R. Briffa4, Justin Sheffield7
1National Center for Atmospheric Research, Boulder USA
2Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany, USA
3Climate Services Department, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
4Climatic Research Unit, University of East Anglia, Norwich, UK
5Department of Meteorology, Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah, Saudi Arabia
6Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, L'Orme des Merisiers, Gif-sur-Yvette, France
7Department of Civil & Environmental Engineering, Princeton University, Princeton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Trenberth, K. E. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 235–336 (IPCC, Cambridge Univ. Press, 2007).

Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (IPCC, Cambridge Univ. Press, 2012).

Dai, A., Trenberth, K. E. & Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004).

Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 116, D12115 (2011).

Dai, A. Increasing drought under global warming in observations and models. Nature Clim. Change 3, 52–58 (2013).

Wang, G. L. Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment. Clim. Dynam. 25, 739–753 (2005).

Burke, E. J., Brown, S. J. & Christidis, N. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeorol. 7, 1113–1125 (2006).

Seager, R. et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 1181–1184 (2007).

Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dynam. 31, 79–105 (2008).

Dai, A. Drought under global warming: A review. WIREs Clim. Change 2, 45–65 (2011).

Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

Hoerling, M., Eischeid, J. & Perlwitz, J. Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Clim. 23, 2131–2145 (2010).

Giorgi, F. et al. Higher hydroclimatic intensity with global warming. J. Clim. 24, 5309–5324 (2011).

Nicholls, N. The changing nature of Australian droughts. Climatic Change 63, 323–336 (2004).

Van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Wat. Resour. Res. 49, 1040–1057 (2013).

Lewis, S. C. & Karoly, D. J. Anthropogenic contributions to Australia's record summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709 (2013).

Seager, R. & Vecchi, G. A. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl Acad. Sci. USA 107, 21277–21282 (2010).

Chou, C. et al. Increase in the range between wet and dry season precipitation. Nature Geosci. 6, 263–267 (2013).

Trenberth, K. E., Dai, A., Rasmussen R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

Van der Schrier, G., Jones, P. D. & Briffa, K. R. The sensitivity of the PDSI to the Thornthwaite and Penman–Monteith parameterizations for potential evapotranspiration. J. Geophys. Res. 116, D03106 (2011).

Orlowsky, B. & Seneviratne, S. Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 17, 1765–1781 (2013).

Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).

Wells, N., Goddard, S. & Hayes M. J. A self-calibrating Palmer Drought Severity Index. J. Clim. 17, 2335–2351 (2004).

Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 50, RG2005 (2012).

McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 416–417, 182–205 (2012).

Mueller, B. et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 38, L06402 (2011).

Van der Schrier, G., Barichivich, J., Briffa, K. R. & Jones, P. D. A scPDSI-based global dataset of dry and wet spells for 1901–2009. J. Geophys. Res. 118, 4025–4048 (2013).

Lorenz, C. & H. Kunstmann, H. The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeorol. 13, 1397–1420 (2012).

Nickl, E., Willmott, C. J., Matsuura, K. & Robeson, S. M. Changes in annual land-surface precipitation over the twentieth and early twenty-first century. Ann. Assoc. Am. Geogr. 100, 729–739 (2010).

Jones, P. D. & Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol. 16, 361–377 (1996).

Mueller, B. & Seneviratne, S. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).

Gu, G., Adler, R. F., Huffman, G. J. & Curtis, S. Tropical rainfall variability on interannual-to-interdecadal/longer-time scales derived from the GPCP monthly product. J. Clim. 20, 4033–4046 (2007).

Vicente-Serrano, S. M. et al. A multi-scalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. 116, D20109 (2011).

Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

Dai, A. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim. Dynam. 41, 633–646 (2013b).

http://pmm.nasa.gov/GPM

Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).

Parker, D. E., Hilburn, K., Hennon, P. & Becker, A. Bull. Am. Meteorol. Soc. 93 (special issue), S26–S27 (2012).

Huffman, G. J., Adler, R. F., Bolvin, D. T. & Gu, G. J. Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett. 36, L17808 (2009).

http://www.cru.uea.ac.uk/cru/data/hrg

http://climate.geog.udel.edu/~climate/html_pages/archive.html

ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata_v6_doi_download.html

http://precip.gsfc.nasa.gov/gpcp_v2.2_data.html

http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php