Global vulnerability of peatlands to fire and carbon loss
Tóm tắt
Từ khóa
Tài liệu tham khảo
Page, S., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Belyea, L. R. & Clymo, R. S. Feedback control of the rate of peat formation. Proc. R. Soc. Lond. B 268, 1315–1321 (2001).
Freeman, C., Ostle, J. & Kang, H. An enzymic latch on a global carbon store. Nature 409, 149 (2001).
Turetsky, M. R., Donahue, W. & Benscoter, B. W. Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Commun. 2, 514 (2011).
Harden, J. W. et al. The role of fire in the boreal carbon budget. Glob. Change Biol. 6, 174–184 (2000).
Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).
Johnston, J. F., Hollingsworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).
Ohlemiller, T. J. Modeling of smoldering combustion propagation. Progr. Energy Combust. Sci. 11, 277–310 (1985).
Rein, G. in Fire Phenomena in the Earth System: An Interdisciplinary Approach to Fire Science (ed. Belcher, C.) 15–34 (Wiley, 2013).
Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).
Rollins, M. S., Cohen, A. D. & Durig, J. R. Effects of fires on the chemical and petrographic composition of peat in the Snuggedy Swamp, North Carolina. Int. J. Coal. Geol. 22, 101–117 (1993).
Dommain, R., Couwenberg, J. & Joosten, H. Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration. Mires Peat 6, 1–17 (2010).
Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology http://dx.doi.org/10.1002/eco.1493 (2014).
Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).
Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region: Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
Benscoter, B. W. & Wieder, R. K. Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Can. J. Forest Res. 33, 2509–2513 (2003).
Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geosci. 4, 27–31 (2011).
Kelly, T. J. et al. The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: Measurements and implications for hydrological function. Hydrol. Process. http://dx.doi.org/10.1002/hyp.9884 (2013).
Goldammer, J. G. in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (ed. Levine, J. S.) 83–91 (MIT, 1992).
Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Change Biol. 15, 48–62 (2009).
Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).
Ballhorn, U., Siegert, F., Mason, M. & Limin, S. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc. Natl Acad. Sci. USA 106, 21213–21218 (2009).
Hoscilo, A., Page, S. E., Tansey, K. J. & Rieley, J. O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 20, 578–588 (2011).
Benscoter, B. W. & Vitt, D. H. Spatial patterns and temporal trajectories in bog ground layer composition along a post-fire chronosequence. Ecosystems 11, 1054–1064 (2008).
Kettridge, N., Thompson, D. K. & Waddington, J. M. Impact of wildfire on the thermal behavior of northern peatlands: Observations and model simulations. J. Geophys. Res. Biogeosci. 117, G02014 (2012).
Shetler, G., Turetsky, M. R., Kane, E. & Kasischke, E. S. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can. J. Forest Res. 38, 2328–2336 (2008).
Benscoter, B. et al. Interactive effects of vegetation, soil moisture, and bulk density on depth of burning of thick organic soils. Int. J. Wildland Fire 20, 418–429 (2011).
Hartford, R. A. & Frandsen, W. When it's hot, it's hot. Or maybe it's not! (Surface flaming may not portend extensive soil heating.) Int. J. Wildland Fire 2, 139–144 (1992).
Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecol. Managem. 220, 166–184 (2005).
Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Applic. 14, 1826–1838 (2004).
Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol. 13, 1079–1088 (2007).
Frolking, S. et al. Peatlands in the Earth's 21st century climate system. Environ. Rev. 19, 371–296 (2011).
van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).
Heil, A., Langmann, B. & Aldrian, E. Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitig. Adapt. Strateg. Glob. Change 12, 113–133 (2006).
Davies, S. J. & Unam, L. Smoke-haze from the 1997 Indonesian forest fires: effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecol. Managem. 124, 137–144 (1999).
Jaafar, Z. & Loh, T-L. Linking land, air, and sea: potential impacts of biomass burning and the resultant haze on marine ecosystems of Southeast Asia. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.12539 (2014).
Chakrabarty, R. K. et al. Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys. 10, 6297–6300 (2010).
Frey, K. E. & Smith, L. C. How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia. Glob. Biogeochem. Cycles 21, GB1016 (2007).
Tansey, K., Beston, J., Hoscilo, A., Page, S. E. & Hernandez, C. U. P. Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. J. Geophys. Res. 113, http://dx.doi.org/10.1029/2008JD010717 (2008).
See, S. W., Balasubramanian, R., Rianawati, E., Karthikeyan, S. & Streets, D. G. Characterization and source apportionment of particulate matter ≤2.5 micrometer in Sumatra, Indonesia, during a recent peat fire episode. Environ. Sci. Technol. 41, 3488–3494 (2007).
Rappold, A. G. et al. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ. Health Persp. 119, 1415–1420 (2011).
Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Persp. 120, http://dx.doi.org/10.1289/ehp.1104422 (2012).
Tallis, J. H. Fire and flood at Holme Moss: Erosion processes in an upland blanket mire. J. Ecol. 75, 1099–1130 (1987).
Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).