Global stability analysis of computer networks with arbitrary topology and time-varying delays

Journal of Zhejiang University SCIENCE C - Tập 11 - Trang 214-226 - 2010
Behrooz Rezaie1, Mohammad-Reza Jahed Motlagh1, Siavash Khorsandi2, Morteza Analoui3
1Deparment of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
2Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
3Deparment of Computer Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran

Tóm tắt

In this paper, we determine the delay-dependent conditions of global asymptotic stability for a class of multi-dimensional nonlinear time-delay systems with application to computer communication networks. A nonlinear delayed model is considered for a rate-based congestion control system of a heterogeneous network with arbitrary topology and time-varying delays. We propose a Lyapunov-based method to obtain a sufficient condition under which global asymptotic stability of the equilibrium is guaranteed. The main contribution of the paper lies in considering time variations of delays in a heterogeneous network which may be applicable in actual networks. Moreover, we obtain conditions for Internet-style networks with multi-source multi-link topology. We first prove the stability for a class of nonlinear time-delay systems. Then, we apply the results to a Kelly’s rate-based approximation of the congestion control system.

Tài liệu tham khảo

Alpcan, T., Basar, T., 2005. A globally stable adaptive congestion control scheme for Internet-style networks with delay. IEEE/ACM Trans. Netw., 13(6):1261–1274. [doi:10.1109/TNET.2005.860099] Deb, S., Srikant, R., 2003. Global stability of congestion controllers for the Internet. IEEE Trans. Automat. Control, 48(6):1055–1060. [doi:10.1109/TAC.2003.812809] Fan, M., Zou, X., 2004. Global asymptotic stability of a class of nonautonomous integro-differential systems and applications. Nonl. Anal., 57(1):111–135. [doi:10.1016/j.na.2004.02.003] Fan, X., Arcak, M., Wen, J.T., 2004. Robustness of network flow control against disturbances and time-delay. Syst. Control Lett., 53(1):13–29. [doi:10.1016/j.sysconle.2004.02.018] Gao, H., Lam, J., Wang, C., Guan, X.P., 2005. Further results on local stability of REM algorithm with time-varying delays. IEEE Commun. Lett., 9(5):402–404. [doi:10.1109/LCOMM.2005.1431152] Guo, S.T., Liao, X.F., Li, C.D., Yang, D.G., 2007. Stability analysis of a novel exponential-RED model with heterogeneous delays. Comput. Commun., 30(5):1058–1074. [doi:10.1016/j.comcom.2006.11.003] Hale, J.K., Lunel, S.M.V., 1993. Introduction to Functional Differential Equations. Springer-Verlag, New York, USA. Johari, R., Tan, D., 2001. End-to-end congestion control for the Internet: delays and stability. IEEE/ACM Trans. Netw., 9(6):818–832. [doi:10.1109/90.974534] Kelly, F.P., 2000. Models for a self-managed Internet. Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 358(1773): 2335–2348. [doi:10.1098/rsta.2000.0651] Kelly, F.P., Maulloo, A.K., Tan, D.K.H., 1998. Rate control in communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc., 49(3):237–252. Liu, S., Basar, T., Srikant, R., 2005. Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols. IEEE/ACM Trans. Netw., 13(5):1068–1081. [doi:10.1109/TNET.2005.857110] Long, C.N., Wu, J., Guan, X.P., 2003. Local stability of REM algorithm with time-varying delays. IEEE Commun. Lett., 7(3):142–144. [doi:10.1109/LCOMM.2003.810070] Low, S.H., Lapsley, D.E., 1999. Optimization flow control: I. basic algorithm and convergence. IEEE/ACM Trans. Netw., 7(6):861–874. [doi:10.1109/90.811451] Low, S.H., Paganini, F., Doyle, J.C., 2002. Internet congestion control. IEEE Control Syst. Mag., 22(1):28–43. [doi:10.1109/37.980245] Massoulie, L., 2002. Stability of distributed congestion control with heterogeneous feedback delays. IEEE Trans. Automat. Control, 47(6):895–902. [doi:10.1109/TAC.2002.1008356] Mazenc, F., Niculescu, S.I., 2003. Remarks on the Stability of a Class of TCP-like Congestion Control Models. Proc. IEEE Conf. on Decision and Control, p.5591–5594. Paganini, F., 2002. A global stability result in network flow control. Syst. Control Lett., 46(3):165–172. [doi:10.1016/S0167-6911(02)00123-8] Paganini, F., Wang, Z., Doyle, J.C., Low, S.H., 2005. Congestion control for high performance, stability and fairness in general networks. IEEE/ACM Trans. Netw., 13(1):43–56. [doi:10.1109/TNET.2004.842216] Papachristodoulou, A., Doyle, J.C., Low, S.H., 2004. Analysis of Nonlinear Delay Differential Equation Models of TCP/AQM Protocols Using Sums of Squares. Proc. IEEE Conf. on Decision and Control, p.4684–4689. Peet, M., Lall, S., 2007. Global stability analysis of a nonlinear model of Internet congestion control with delay. IEEE Trans. Automat. Control, 52(3):553–559. [doi:10.1109/TAC.2007.892379] Ranjan, P., Abed, E.H., La, R.J., 2004. Nonlinear instabilities in TCP-RED. IEEE/ACM Trans. Netw., 12(6):1079–1092. [doi:10.1109/TNET.2004.838600] Ranjan, P., La, R.J., Abed, E.H., 2006. Global stability conditions for rate control with arbitrary communication delays. IEEE/ACM Trans. Netw., 14(1):94–107. [doi:10.1109/TNET.2005.863476] Shakkottai, S., Srikant, R., 2004. Mean FDE models for Internet congestion control under a many-flows regime. IEEE Trans. Inf. Theory, 50(6):1050–1072. [doi:10.1109/TIT.2004.828063] Slotine, J.J.E., Li, W., 1991. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ, p.123. Srikant, R., 2004. The Mathematics of Internet Congestion Control. Birkhauser, Cambridge, MA, p.40–47. Tan, L., Zhang, W., Peng, G., Chen, G., 2006. Stability of TCP/RED systems in AQM routers. IEEE Trans. Automat. Control, 51(8):1393–1398. [doi:10.1109/TAC.2006.876802] Tian, Y.P., 2005a. A general stability criterion for congestion control with diverse communication delays. Automatica, 41(7):1255–1262. [doi:10.1016/j.automatica.2005.02.007] Tian, Y.P., 2005b. Stability analysis and design of the second-order congestion control for networks with heterogeneous delays. IEEE/ACM Trans. Netw., 13(5):1082–1093. [doi:10.1109/TNET.2005.857069] Vinnicombe, G., 2000. On the Stability of End-to-End Congestion Control for the Internet. Technical Report No. CUED/F-INFENG/TR.398, University of Cambridge, Cambridge, UK, p.1–6. Wang, Z., Paganini, F., 2006. Boundedness and global stability of a nonlinear congestion control with delays. IEEE Trans. Automat. Control, 51(9):1514–1519. [doi:10.1109/TAC.2006.880794] Wen, J.T., Arcak, M., 2004. A unifying passivity framework for network flow control. IEEE Trans. Automat. Control, 49(2):162–174. [doi:10.1109/TAC.2003.822858] Ying, L., Dullerud, G.E., Sirkant, R., 2006. Global stability of Internet congestion controllers with heterogeneous delay. IEEE/ACM Trans. Netw., 14(3):579–591. [doi:10.1109/TNET.2006.876164] Zhang, Y., Loguinov, D., 2008. Local and global stability of delayed congestion control system. IEEE Trans. Automat. Control, 53(10):2356–2360. [doi:10.1109/TAC.2008.2007135] Zhang, Y., Kang, S.R., Loguinov, D., 2007. Delay-independent stability and performance of distributed congestion control. IEEE/ACM Trans. Netw., 15(4):838–851. [doi:10.1109/TNET.2007.896169]