Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study

Geoscientific Model Development - Tập 11 Số 4 - Trang 1653-1664
Ksenia Aleksankina1,2, Mathew R. Heal2, Anthony J. Dore1, Marcel van Oijen1, Stefan Reis1,3
1NERC Centre for Ecology & Hydrology, Penicuik, UK
2School of Chemistry, University of Edinburgh, Edinburgh, UK
3University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro, UK

Tóm tắt

Abstract. Atmospheric chemistry transport models (ACTMs) are widely used to underpin policy decisions associated with the impact of potential changes in emissions on future pollutant concentrations and deposition. It is therefore essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input pollutant emissions. ACTMs incorporate complex and non-linear descriptions of chemical and physical processes which means that interactions and non-linearities in input–output relationships may not be revealed through the local one-at-a-time sensitivity analysis typically used. The aim of this work is to demonstrate a global sensitivity and uncertainty analysis approach for an ACTM, using as an example the FRAME model, which is extensively employed in the UK to generate source–receptor matrices for the UK Integrated Assessment Model and to estimate critical load exceedances. An optimised Latin hypercube sampling design was used to construct model runs within ±40 % variation range for the UK emissions of SO2, NOx, and NH3, from which regression coefficients for each input–output combination and each model grid ( >  10 000 across the UK) were calculated. Surface concentrations of SO2, NOx, and NH3 (and of deposition of S and N) were found to be predominantly sensitive to the emissions of the respective pollutant, while sensitivities of secondary species such as HNO3 and particulate SO42−, NO3−, and NH4+ to pollutant emissions were more complex and geographically variable. The uncertainties in model output variables were propagated from the uncertainty ranges reported by the UK National Atmospheric Emissions Inventory for the emissions of SO2, NOx, and NH3 (±4, ±10, and ±20 % respectively). The uncertainties in the surface concentrations of NH3 and NOx and the depositions of NHx and NOy were dominated by the uncertainties in emissions of NH3, and NOx respectively, whilst concentrations of SO2 and deposition of SOy were affected by the uncertainties in both SO2 and NH3 emissions. Likewise, the relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4+, NO3−, SO42−, and HNO3) were due to uncertainties in at least two input variables. In all cases the spatial distribution of relative uncertainty was found to be geographically heterogeneous. The global methods used here can be applied to conduct sensitivity and uncertainty analyses of other ACTMs.

Từ khóa


Tài liệu tham khảo

Aleksankina, K.: Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study [Data set], Zenodo, https://doi.org/10.5281/zenodo.1145852, 2018.

Appel, K. W., Gilliland, A. B., Sarwar, G., and Gilliam, R. C.: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance, Atmos. Environ., 41, 9603–9615, https://doi.org/10.1016/j.atmosenv.2007.08.044, 2007.

AQEG: Linking Emission Inventories and Ambient Measurements, available at: https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1508060906_ DEF-PB14106_Linking_Emissions_ Inventories_And_Ambient_ Measurements_Final.pdf (last access: 9 March 2018), 2015.

Bergin, M. S., Noblet, G. S., Petrini, K., Dhieux, J. R., Milford, J. B., and Harley, R. A.: Formal Uncertainty Analysis of a Lagrangian Photochemical Air Pollution Model, Environ. Sci. Technol., 33, 1116–1126, https://doi.org/10.1021/es980749y, 1999.

Blatman, G. and Sudret, B.: A comparison of three metamodel-based methods for global sensitivity analysis: GP modelling, HDMR and LAR-gPC, Procedia – Soc. Behav. Sci., 2, 7613–7614, https://doi.org/10.1016/j.sbspro.2010.05.143, 2010.

Boldo, E., Linares, C., Lumbreras, J., Borge, R., Narros, A., García-Pérez, J., Fernández-Navarro, P., Pérez-Gómez, B., Aragonés, N., Ramis, R., Pollán, M., Moreno, T., Karanasiou, A., and López-Abente, G.: Health impact assessment of a reduction in ambient PM2.5 levels in Spain, Environ. Int., 37, 342–348, https://doi.org/10.1016/j.envint.2010.10.004, 2011.

Borge, R., Alexandrov, V., José del Vas, J., Lumbreras, J., and Rodríguez, E.: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos. Environ., 42, 8560–8574, https://doi.org/10.1016/j.atmosenv.2008.08.032, 2008.

Box, G. E. P. and Hunter, J. S.: The 2 k-p Fractional Factorial Designs Part I, Technometrics, 3, 311–351, https://doi.org/10.2307/1266725, 1961.

Capaldo, K. P. and Pandis, S. N.: Dimethylsulfide chemistry in the remote marine atmosphere: Evaluation and sensitivity analysis of available mechanisms, J. Geophys. Res.-Atmos., 102, 23251–23267, https://doi.org/10.1029/97JD01807, 1997.

Carnell, R.: lhs: Latin Hypercube Samples, available at: https://cran.r-project.org/package=lhs (15 February 2018), 2016.

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013.

Chen, S., Brune, W. H., Lambe, A. T., Davidovits, P., and Onasch, T. B.: Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber, Atmos. Chem. Phys., 13, 5017–5031, https://doi.org/10.5194/acp-13-5017-2013, 2013.

Christian, K. E., Brune, W. H., and Mao, J.: Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS (2008), Atmos. Chem. Phys., 17, 3769–3784, https://doi.org/10.5194/acp-17-3769-2017, 2017.

Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., and Granier, C.: Forty years of improvements in European air quality: regional policy-industry interactions with global impacts, Atmos. Chem. Phys., 16, 3825–3841, https://doi.org/10.5194/acp-16-3825-2016, 2016.

Dean, A., Morris, M., Stufken, J., and Bingham, D.: Handbook of Design and Analysis of Experiments, Chapman and Hall/CRC, New York, 2015.

Derwent, R. G.: Treating uncertainty in models of the atmospheric chemistry of nitrogen compounds, Atmos. Environ., 21, 1445–1454, https://doi.org/10.1016/0004-6981(88)90095-9, 1987.

Dore, A. J., Kryza, M., Hall, J. R., Hallsworth, S., Keller, V. J. D., Vieno, M., and Sutton, M. A.: The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads, Biogeosciences, 9, 1597–1609, https://doi.org/10.5194/bg-9-1597-2012, 2012.

Dore, A. J., Carslaw, D. C., Braban, C., Cain, M., Chemel, C., Conolly, C., Derwent, R. G., Griffiths, S. J., Hall, J., Hayman, G., Lawrence, S., Metcalfe, S. E., Redington, A., Simpson, D., Sutton, M. A., Sutton, P., Tang, Y. S., Vieno, M., Werner, M., and Whyatt, J. D.: Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK, Atmos. Environ., 119, 131–143, https://doi.org/10.1016/j.atmosenv.2015.08.008, 2015.

Fournier, N., Pais, V. A., Sutton, M. A., Weston, K. J., Dragosits, U., Tang, S. Y., and Aherne, J.: Parallelisation and application of a multi-layer atmospheric transport model to quantify dispersion and deposition of ammonia over the British Isles, Environ. Pollut., 116, 95–107, https://doi.org/10.1016/S0269-7491(01)00146-4, 2002.

Fournier, N., Dore, A. J., Vieno, M., Weston, K. J., Dragosits, U., and Sutton, M. A.: Modelling the deposition of atmospheric oxidised nitrogen and sulphur to the United Kingdom using a multi-layer long-range transport model, Atmos. Environ., 38, 683–694, https://doi.org/10.1016/j.atmosenv.2003.10.028, 2004.

Frost, G. J., Middleton, P., Tarrasón, L., Granier, C., Guenther, A., Cardenas, B., Denier van der Gon, H., Janssens-Maenhout, G., Kaiser, J. W., Keating, T., Klimont, Z., Lamarque, J. F., Liousse, C., Nickovic, S., Ohara, T., Schultz, M. G., Skiba, U., Van Aardenne, J., and Wang, Y.: New Directions: GEIA's 2020 vision for better air emissions information, Atmos. Environ., 81, 710–712, https://doi.org/10.1016/j.atmosenv.2013.08.063, 2013.

Hanna, S. R., Paine, R., Heinold, D., Kintigh, E., and Baker, D.: Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST3 in the Houston ship channel area, J. Appl. Meteorol. Clim., 46, 1372–1382, https://doi.org/10.1175/JAM2540.1, 2007.

Heal, M. R., Heaviside, C., Doherty, R. M., Vieno, M., Stevenson, D. S., and Vardoulakis, S.: Health burdens of surface ozone in the UK for a range of future scenarios, Environ. Int., 61, 36–44, https://doi.org/10.1016/j.envint.2013.09.010, 2013.

Hellsten, S., Dragosits, U., Place, C. J., Vieno, M., Dore, A. J., Misselbrook, T. H., Tang, Y. S., and Sutton, M. A.: Modelling the spatial distribution of ammonia emissions in the UK, Environ. Pollut., 154, 370–379, https://doi.org/10.1016/j.envpol.2008.02.017, 2008.

Homma, T. and Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models, Reliab. Eng. Syst. Safe., 52, 1–17, https://doi.org/10.1016/0951-8320(96)00002-6, 1996.

IPCC: IPCC Guidelines for National Greenhouse Gas Inventories, General Guidance and Reporting, available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_ Volume1/V1_3_Ch3_ Uncertainties.pdf (15 February 2018), 2006.

Jimenez, L. O. and Landgrebe, D.: Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data, IEEE Trans. Syst. Man Cy. C, 28, 39–54, https://doi.org/10.1109/5326.661089, 1998.

Johnson, M. E., Moore, L. M., and Ylvisaker, D.: Minimax and maximin distance designs, J. Stat. Plan. Infer., 26, 131–148, https://doi.org/10.1016/0378-3758(90)90122-B, 1990.

Konda, U., Singh, T., Singla, P., and Scott, P.: Uncertainty propagation in puff-based dispersion models using polynomial chaos, Environ. Modell. Softw., 25, 1608–1618, https://doi.org/10.1016/j.envsoft.2010.04.005, 2010.

Labrador, L. J., von Kuhlmann, R., and Lawrence, M. G.: The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC, Atmos. Chem. Phys., 5, 1815–1834, https://doi.org/10.5194/acp-5-1815-2005, 2005.

Lagerwall, G., Kiker, G., Muñoz-Carpena, R., and Wang, N.: Global uncertainty and sensitivity analysis of a spatially distributed ecological model, Ecol. Modell., 275, 22–30, https://doi.org/10.1016/j.ecolmodel.2013.12.010, 2014.

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, Atmos. Chem. Phys., 11, 12253–12273, https://doi.org/10.5194/acp-11-12253-2011, 2011.

Makar, P. A., Moran, M. D., Zheng, Q., Cousineau, S., Sassi, M., Duhamel, A., Besner, M., Davignon, D., Crevier, L.-P., and Bouchet, V. S.: Modelling the impacts of ammonia emissions reductions on North American air quality, Atmos. Chem. Phys., 9, 7183–7212, https://doi.org/10.5194/acp-9-7183-2009, 2009.

Makler-Pick, V., Gal, G., Gorfine, M., Hipsey, M. R., and Carmel, Y.: Sensitivity analysis for complex ecological models – A new approach, Environ. Model. Softw., 26, 124–134, https://doi.org/10.1016/j.envsoft.2010.06.010, 2011.

Matejko, M., Dore, A. J., Hall, J., Dore, C. J., Błaś, M., Kryza, M., Smith, R., and Fowler, D.: The influence of long term trends in pollutant emissions on deposition of sulphur and nitrogen and exceedance of critical loads in the United Kingdom, Environ. Sci. Policy, 12, 882–896, https://doi.org/10.1016/j.envsci.2009.08.005, 2009.

McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21, 239–245, https://doi.org/10.1080/00401706.1979.10489755, 1979.

Misra, A., Passant, N. R., Murrells, T. P., Pang, Y., Thistlethwaite, G., Walker, C., Broomfield, M., Wakeling, D., del Vento, S., Pearson, B., Hobson, M., Misselbrook, T., and Dragosits, U.: UK Informative Inventory Report (1990 to 2013), available at: http://naei.beis.gov.uk/reports/reports?report_id=809 (last access: 24 April 2018), 2015.

Morris, M. D. and Mitchell, T. J.: Exploratory designs for computational experiments, J. Stat. Plan. Infer., 43, 381–402, https://doi.org/10.1016/0378-3758(94)00035-T, 1995.

Norton, J.: An introduction to sensitivity assessment of simulation models, Environ. Model. Softw., 69, 166–174, https://doi.org/10.1016/j.envsoft.2015.03.020, 2015.

Oxley, T., Apsimon, H., Dore, A., Sutton, M., Hall, J., Heywood, E., Gonzales Del Campo, T., and Warren, R.: The UK Integrated Assessment Model , UKIAM?: A National Scale Approach to the Analysis of Strategies for Abatement of Atmospheric Pollutants Under the Convention on Long-Range Transboundary Air Pollution, Integr. Assess., 4, 236–249, https://doi.org/10.1080/1389517049051538, 2003.

Oxley, T., Dore, A. J., ApSimon, H., Hall, J., and Kryza, M.: Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM), Environ. Int., 61, 17–35, https://doi.org/10.1016/j.envint.2013.09.009, 2013.

Park, J. S.: Optimal Latin-hypercube designs for computer experiments, J. Stat. Plan. Infer., 39, 95–111, https://doi.org/10.1016/0378-3758(94)90115-5, 1994.

Pulles, T. and Kuenen, J.: EMEP/EEA air pollutant emission inventory guidebook, available at: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (last access: 28 February 2018), 2016.

Rypdal, K. and Winiwarter, W.: Uncertainties in greenhouse gas emission inventories – evaluation, comparability and implications, Environ. Sci. Policy, 4, 107–116, https://doi.org/10.1016/S1462-9011(00)00113-1, 2001.

Saltelli, A.: Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 280–297, https://doi.org/10.1016/S0010-4655(02)00280-1, 2002.

Saltelli, A. and Annoni, P.: How to avoid a perfunctory sensitivity analysis, Environ. Model. Softw., 25, 1508–1517, https://doi.org/10.1016/j.envsoft.2010.04.012, 2010.

Saltelli, A., Chan, K., and Scott, E. M.: Sensitivity Analysis, edited by: Saltelli, A., Chan, K., and Scott, E. M., Wiley, Chichester, UK, 2000.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis, The Primer, John Wiley & Sons, Ltd, Chichester, UK, 2008.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259–270, https://doi.org/10.1016/j.cpc.2009.09.018, 2010.

Sax, T. and Isakov, V.: A case study for assessing uncertainty in local-scale regulatory air quality modeling applications, Atmos. Environ., 37, 3481–3489, https://doi.org/10.1016/S1352-2310(03)00411-4, 2003.

Shahsavani, D. and Grimvall, A.: Variance-based sensitivity analysis of model outputs using surrogate models, Environ. Model. Softw., 26, 723–730, https://doi.org/10.1016/j.envsoft.2011.01.002, 2011.

Shin, M. J., Guillaume, J. H. A., Croke, B. F. W., and Jakeman, A. J.: Addressing ten questions about conceptual rainfall-runoff models with global sensitivity analyses in R, J. Hydrol., 503, 135–152, https://doi.org/10.1016/j.jhydrol.2013.08.047, 2013.

De Simone, F., Gencarelli, C. N., Hedgecock, I. M., and Pirrone, N.: Global atmospheric cycle of mercury: A model study on the impact of oxidation mechanisms, Environ. Sci. Pollut. Res., 21, 4110–4123, https://doi.org/10.1007/s11356-013-2451-x, 2014.

Simpson, D., Tuovinen, J. P., Emberson, L., and Ashmore, M. R.: Characteristics of an ozone deposition module II: Sensitivity analysis, Water. Air. Soil Pollut., 143, 123–137, https://doi.org/10.1023/A:1022890603066, 2003.

Singles, R., Sutton, M. A., and Weston, K. J.: A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain, Atmos. Environ., 32, 393–399, https://doi.org/10.1016/S1352-2310(97)83467-X, 1998.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang, X., Wang, W., and Powers, J.: A Description of the Advanced Research WRF Version 3, NCAR technical note NCAR/TN-475+STR, 2008.

Sobol', I. M.: On the distribution of points in a cube and the approximate evaluation of integrals, USSR Comp. Math. Math.+, 7, 86–112, https://doi.org/10.1016/0041-5553(67)90144-9, 1967.

Sobol', I. M.: Uniformly distributed sequences with an additional uniform property, USSR Comp. Math. Math.+, 16, 236–242, https://doi.org/10.1016/0041-5553(76)90154-3, 1976.

Sobol', I. M.: Sensitivity analysis for non-linear mathematical models, Math. Model. Comput. Exp., 1, 407–414, 1993.

Sobol', I. M. and Levitan, Y. L.: A pseudo-random number generator for personal computers, Comput. Math. Appl., 37, 33–40, https://doi.org/10.1016/S0898-1221(99)00057-7, 1999.

Song, X., Bryan, B. A., Paul, K. I., and Zhao, G.: Variance-based sensitivity analysis of a forest growth model, Ecol. Model., 247, 135–143, https://doi.org/10.1016/j.ecolmodel.2012.08.005, 2012.

Storlie, C. B. and Helton, J. C.: Multiple predictor smoothing methods for sensitivity analysis: Description of techniques, Reliab. Eng. Syst. Safe., 93, 28–54, https://doi.org/10.1016/J.RESS.2006.10.012, 2008.

Thompson, T. M. and Selin, N. E.: Influence of air quality model resolution on uncertainty associated with health impacts, Atmos. Chem. Phys., 12, 9753–9762, https://doi.org/10.5194/acp-12-9753-2012, 2012.

United Nations Economic Commission for Europe: Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution, available at: https://www.unece.org/fileadmin/DAM/env/documents/2015/AIR/EB/English.pdf (last access: 28 February 2018), 2015.

Vieno, M., Heal, M. R., Williams, M. L., Carnell, E. J., Nemitz, E., Stedman, J. R., and Reis, S.: The sensitivities of emissions reductions for the mitigation of UK PM2.5, Atmos. Chem. Phys., 16, 265–276, https://doi.org/10.5194/acp-16-265-2016, 2016.

Xing, J., Wang, S. X., Chatani, S., Zhang, C. Y., Wei, W., Hao, J. M., Klimont, Z., Cofala, J., and Amann, M.: Projections of air pollutant emissions and its impacts on regional air quality in China in 2020, Atmos. Chem. Phys., 11, 3119–3136, https://doi.org/10.5194/acp-11-3119-2011, 2011.

Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., and Stewart, A.: Understanding uncertainty in distributed flash flood forecasting for semiarid regions, Water Resour. Res., 44, https://doi.org/10.1029/2007WR005940, 2008.

Zhang, Y., Liu, X.-H., Olsen, K. M., Wang, W.-X., Do, B. A., and Bridgers, G. M.: Responses of future air quality to emission controls over North Carolina, Part II: Analyses of future-year predictions and their policy implications, Atmos. Environ., 44, 2767–2779, https://doi.org/10.1016/j.atmosenv.2010.03.022, 2010.