Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

Reviews of Geophysics - Tập 50 Số 3 - 2012
Paul Ginoux1, Joseph M. Prospero2, Thomas E. Gill3,4, N. Christina Hsu5, Ming Zhao1
1NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
2Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
3Department of Geological Sciences, University of Texas at El Paso, El Paso, Texas, USA
4Environmental Science and Engineering Program, University of Texas at El Paso, Texas, USA
5NASA/Goddard Space Flight Center, Greenbelt, Maryland USA

Tóm tắt

Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small‐scale features which could account for a large fraction of global emissions. Here we present a global‐scale high‐resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small‐scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

Từ khóa


Tài liệu tham khảo

10.2136/sh2009.1.0003

10.1029/2011JD016339

Abell P. I., 1988, Paleoenvironments in the Chalbi Basin of Kenya, Chem. Geol., 72, 283

10.1016/j.aridenv.2008.05.006

10.2112/1551-5036(2004)020[0464:GAACOS]2.0.CO;2

10.1051/agro/2010022

10.1007/s10661‐010‐1686‐y

10.1029/2005JD006977

10.1136/oem.2006.031500

10.1260/014459806779388038

10.1016/j.atmosenv.2008.03.044

10.1016/j.biocon.2007.12.005

10.1002/qj.244

10.1029/2008JD011444

10.1111/1475‐4959.04977

10.1029/2005JD007025

10.1191/0309133303pp386ra

10.1111/j.1365‐3091.2006.00827.x

10.1029/2008GL033928

10.1029/2011JF002061

10.1002/esp.235

10.1029/2004JF000272

10.1016/S0021-8502(99)00552-2

10.1029/2008GL033390

10.1029/2005JD005791

10.1073/pnas.0912391107

10.1007/s00484‐011‐0413‐x

10.1016/S0169-8095(01)00092-8

10.1016/j.atmosenv.2005.10.047

10.5194/acp-7-5501-2007

10.1016/0960-1686(92)90350-T

10.1016/S1352-2310(02)01021-X

Christensen J. H., 2007, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 847

10.1111/j.1600-0889.2004.00120.x

10.1029/98JD00046

10.1073/pnas.08102000106

10.1016/j.earscirev.2006.12.002

10.1029/2010GL046573

10.1126/science.250.4988.1669

10.1029/2007JD009417

10.1016/j.gloplacha.2006.07.024

10.1016/j.scitotenv.2010.09.025

10.1579/0044-7447(2007)36[73:NMDAHH]2.0.CO;2

10.1006/jare.1997.0369

10.1029/2009JD013395

Dickerson P. W., 2000, Dynamic Earth Environments: Remote Sensing Observations from Shuttle‐Mir Missions, 145

10.1029/2009JD013167

10.1029/2000JD900282

10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

10.1029/1999JD900923

10.1080/01431160500113112

10.1016/S1040-6182(00)00089-6

10.1002/joc.1072

10.1029/2002GL016471

10.1016/j.geomorph.2003.07.009

10.1016/j.atmosenv.2006.09.048

10.3354/cr010127

10.1016/S1465‐9972(00)00002‐7

Forster P., 2007, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 129

Fryberger S. G., 1983, Eolian dune, interdune, sand sheet, and siliclastic sabkha sediments of an offshore prograding sand sea, Dhahran area, Saudi Arabia, AAPG Bull., 67, 280

10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2

10.1029/2006GL027693

10.1029/2009JD013263

10.1007/978‐3‐642‐14779‐1_4

10.1016/0169‐555X(95)00104‐D

Gillette D. A., 1999, A qualitative geophysical explanation for “hot spot” dust emitting source regions, Contrib. Atmos. Phys., 72, 67

10.1029/JD093iD11p14233

10.1029/97JD02252

10.1016/1352‐2310(95)00432‐7

10.1029/2003JD003470

10.1029/2000JD000053

10.1016/S1364‐8152(03)00114‐2

10.1029/2009JD012398

10.1007/978‐3‐642‐14779‐1_18

10.1029/2004GL019502

10.1017/CBO9780511807527.014

10.1016/S0012‐8252(01)00067‐8

10.1016/j.envres.2011.06.007

10.1029/1999JD901084

10.1016/0004-6981(73)90081-4

10.1016/j.atmosenv.2012.06.029

10.5194/acp‐12‐2933‐2012

10.1175/1520-0450(1987)026<1147:WVAWDD>2.0.CO;2

10.1111/j.1365-2389.1957.tb01879.x

10.1029/96JD03680

10.1016/S0277-3791(03)00164-1

10.1016/S0034-4257(98)00031-5

10.1109/TGRS.2004.824067

10.1109/TGRS.2006.879540

10.5194/acp‐11‐7781‐2011

10.1007/s10584‐011‐0153‐2

10.1175/1520-0477(1972)053<0930:AAH>2.0.CO;2

10.5194/acp‐11‐7069‐2011

10.1029/2003EO460001

10.1126/science.1105959

10.1016/j.scitotenv.2010.08.049

10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

10.1002/hyp.6097

10.1029/1999GB001232

10.1029/2010GL042816

10.1016/0341-8162(95)00026-O

10.1029/2011RG000362

10.1029/2005GL023420

10.1007/s00531‐009‐0487‐4

10.1088/1748‐9326/1/1/01405

10.2151/jmsj.83A.1

10.1016/j.geomorph.2007.12.016

10.1016/j.aeolia.2011.08.001

10.1029/2000JD900749

10.1126/science.1075457

10.1029/2010JD014784

10.1029/2007JD009190

10.1029/2009JD012356

10.1002/joc.3370110405

10.1007/s11270‐010‐0633‐4

10.1016/j.atmosenv.2009.05.032

10.1016/j.geoderma.2011.07.026

10.1029/2010GL045514

10.1029/2003GL017880

10.1029/2002GL016041

10.1029/2005JD006653

10.5194/acp‐10‐10875‐2010

10.1029/2011GL048368

10.1016/j.epsl.2009.03.013

10.1016/j.quascirev.2011.07.015

10.1002/jpln.200800141

10.1073/pnas.0607657104

10.1016/0277-3791(89)90039-5

10.1016/S1462‐9011(02)00122‐3

10.1175/BAMS-88-9-1383

10.1029/2007JD009522

10.1146/annurev.earth.35.031306.140120

10.1111/j.1440‐1770.2010.00437.x

10.1002/joc.3370060207

10.1029/2004JD004912

10.1029/2007JD008550

Morishima W., 2010, Seasonal trends of rainfall and surface temperature over southern Africa, Afr. Study Monogr. Suppl., 40, 67

10.1038/nature09213

10.1073/nas.1014947108

National Research Council, 1983, Environmental Change in the West African Sahel

10.1016/S1352‐2310(02)01023‐3

10.1038/ngeo133

10.1016/j.jaridenv.2007.04.009

10.1111/j.1365-3091.1993.tb01365.x

Nickling W. G., 1999, Dust emissions from the Channel Country of western Queensland, Australia, Z. Geomorphol. Suppl., 116, 1

10.1016/j.geoderma.2003.11.012

Novlan D. J. M.Hardiman andT. E.Gill(2007) A synoptic climatology of blowing dust events in El Paso Texas from 1932–2005 paper presented at 16th Conference on Applied Climatology Am. Meteorol. Soc. San Antonio Tex.

10.1175/1520‐0450(1997)036

10.1002/jqs.3390040204

10.1029/2011EO290001

10.1016/0004-6981(76)90136-0

10.1016/j.envsci.2005.06.009

10.1029/2007JD009551

10.1029/2008JD009804

10.2307/1787252

10.1016/j.jhydrol.2006.09.005

10.1016/j.atmosenv.2007.03.060

10.1029/1999JD900072

10.1126/science.108915

10.1023/A:1005277214288

10.1029/2000RG000095

10.1126/science.1217447

10.1006/jare.1998.0401

10.1016/j.jcp.2007.07.022

10.5194/acp‐10‐5925‐2010

10.1029/2008JD009906

10.1016/j.atmosenv.2011.11.017

10.1016/j.aeolia.2011.12.001

10.1029/2010RG000328

10.1002/esp.1515

10.1016/j.atmosenv.2010.03.019

10.1073/pnas.101122798

10.1029/2002GL016055

10.1016/j.atmosres.2008.02.004

10.1136/oem.2010.058156

10.1016/j.geomorph.2004.02.002

10.1029/2007GL030168

10.1029/2008JD010325

10.1029/2005JD006328

10.1073/pnas.0910856107

10.1029/2005GL023062

10.1029/2002GL016305

10.1007/s10021‐007‐9032‐0

10.1006/jare.2000.0732

10.1016/S0140-1963(02)00266-5

10.1016/j.aeolia.2010.11.001

10.1038/NGEO474

10.5194/acp‐10‐11471‐2010

10.1029/2000JD900665

10.1034/j.1600-0889.1992.t01-1-00005.x

10.1029/2003GL019216

10.5194/acp-6-4345-2006

10.1029/2006JD007170

10.1029/2007JD008809

10.1016/j.jhydrol.2010.08.019

10.1029/2002JD002204

10.1029/2008JD011541

10.1016/j.jaridenv.2003.11.009

10.1016/j.geomorph.2006.04.015

10.1029/2005JD006502

10.1016/j.geomorph.2006.01.012

10.1016/j.jaridenv.2009.10.009

Whitney J. W., 2006, Geology, water, and wind in the lower Helmand Basin, southern Afghanistan, U.S. Geol. Surv. Sci. Invest. Rep., 2006, 40

10.1002/esp.2110

10.1111/1475‐4959.04976

10.1378/chest.76.5.566

10.1016/S1040-6182(00)00085-9

10.1016/j.atmosenv.2005.06.027

10.1016/S1352‐2310(02)00585‐X

10.1016/j/aeolia.2011.08.002

10.1080/07438141.2010.541327

10.1029/2004JD005501

10.1029/2002JD003039

10.1029/2003GL018206

10.1175/2009JCLI3049.1