Global response to pandemic flu: more research needed on a critical front

Health Research Policy and Systems - Tập 4 - Trang 1-4 - 2006
Meng-Kin Lim1
1Department of Community, Occupational & Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Tóm tắt

If and when sustained human-to-human transmission of H5N1 becomes a reality, the world will no longer be dealing with sporadic avian flu borne along migratory flight paths of birds, but aviation flu – winged at subsonic speed along commercial air conduits to every corner of planet Earth. Given that air transportation is the one feature that most differentiates present day transmission scenarios from those in 1918, our present inability to prevent spread of influenza by international air travel, as reckoned by the World Health Organization, constitutes a major weakness in the current global preparedness plan against pandemic flu. Despite the lessons of SARS, it is surprising that aviation-related health policy options have not been more rigorously evaluated, or scientific research aimed at strengthening public health measures on the air transportation front, more energetically pursued.

Tài liệu tham khảo

Lederberg J, Shope RE, Oaks SC, Eds: Emerging infections: microbial threats to Health in the United States. Committee on Emerging Microbial Threats to Health. 1992, Institute of Medicine, National Academies Press, Washington, D.C World Health Organization: Cumulative Number of Reported Probable Cases of SARS from 1 Nov 2002 to 11 July 2003. [http://www.who.int/csr/sars/country/2003_07_11/en/] The Association of Flight Attendants: Flight Attendants Demand Protection from SARS. AFL-CIO Press release. Washington, D.C, April 3, 2003 Mangili A, Gendreau MA: Transmission of infectious diseases during commercial air travel. Lancet. 365 (9463): 989-96. 10.1016/S0140-6736(05)71089-8. 2005 Mar 12–18 Lim MK, Koh D: SARS and occupational health in the air. Occupational and Environmental Medicine. 2003, 60 (8): 539-40. 10.1136/oem.60.8.539. Olsen SJ, Chang HL, Cheung TYY, Tang AFY, Fisk TL, Ooi SPL, Kuo HW, Jiang DDS, Chen KT, Lando J, Hsu KH, Chen TJ, Dowell SF: Transmission of the Severe Acute Respiratory Syndrome on Aircraft. N Engl J Med. 2003, 349: 2416-2422. 10.1056/NEJMoa031349. Pickles H: Using lessons from the past to plan for pandemic flu. BMJ. 2006, 1;332 (7544): 783-6. 10.1136/bmj.332.7544.783. Fitzsimons B: ICAO takes action on SARS. Aviation International News. Paris. June 16 2003, [http://www.ainonline.com/Publications/paris/paris_03/pd2sarspg18.html] St John RK, King A, de Jong D, Bodie-Collins M, Squires SG, Tam TW: Border screening for SARS. Emerg Infect Dis. 2005, 11 (1): 6-10. Rothstein MA, Alcalde MG, Elster NR, Majunder MA, Palmer LI, Stone TH, Hoffman RE: Quarantine And Isolation: Lessons Learned From Sars. A Report to the Centers for Disease Control and Prevention Institute for Bioethics, Health Policy and Law University of Louisville School of Medicine. 2003 World Health Organization Department of Communicable Disease Surveillance and Response Global Influenza Programme: WHO global influenza preparedness plan-The role of WHO and recommendations for national measures before and during pandemics. 2005, [http://www.who.int/csr/resources/publications/influenza/WHO_CDS_CSR_GIP_2005_5.pdf] Singh J, Finkelstein S: Airport readiness for possible pandemic benefits from experience with SARS. ICAO Journal. 2005, 60 (6): 9-11. Centers for disease control and prevention: Interim Guidance for Airline Cleaning Crew, Maintenance Crew, and Baggage/Package and Cargo Handlers for Airlines Returning from Areas Affected by Avian Influenza A (H5N1) January 13, 2006. [http://www.cdc.gov/travel/other/avian_flu_airlines_cleaning_update_120505.htm] Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF: Highly pathogenic H5N1 influenza virus infection in migratory birds. Science. 2005, 309 (5738): 1206-10.1126/science.1115273. Chen H, Smith GJD, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JSM, Guan Y: Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature. 436: 191-192. 10.1038/nature03974. 14 Jul 2005 World Health Organization: Avian influenza: assessing the pandemic threat. 2005, [http://www.who.int/csr/disease/influenza/WHO_CDS_2005_29/en/] Pitman RJ, Cooper BS, Trotter CL, Gay NJ, Edmunds WJ: Entry screening for severe acute respiratory syndrome (SARS) or influenza: policy evaluation. BMJ. 331 (7527): 1242-3. 10.1136/bmj.38573.696100.3A. 2005 Nov 26 Cox NJ, Subbarao K: Global epidemiology of influenza: past and present. Annu Rev Med. 2000, 51: 407-21. 10.1146/annurev.med.51.1.407. Rvachev LA, Longini IM: A mathematical model for the global spread of Influenza. Mathematical Biosciences. 1985, 75: 3-22. 10.1016/0025-5564(85)90064-1. Grais RF, Ellis JH, Glass GE: Assessing the impact of airline travel on the geographic spread of pandemic influenza. European Journal of Epidemiology. 2003, 18 (11): 1065-1072. 10.1023/A:1026140019146. UK Home office PublicTechnology.net. e-Borders will fence UK & use IT to track and identify passengers, Sep 30, 2004. [http://www.publictechnology.net/modules.php?op=modload&name=News&file=article&sid=1831] Scheller FW, Wollenberger U, Warsinke A, Lisdat F: Research and development in biosensors. Current Opinion in Biotechnology. 2001, 12 (1): 35-40. 10.1016/S0958-1669(00)00169-5. Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ: Delaying the international spread of pandemic influenza. PLoS Med. 2006, 3 (6): e212-10.1371/journal.pmed.0030212. Brahmbhatt M: Avian and human pandemic influenza–economic and social impacts. 2005, [http://www.who.int/mediacentre/events/2005/World_Bank_Milan_Brahmbhattv2.pdf] CNN. Bird flu may kill 150 m, warns UN, 30 September 2005. [http://www.cnn.com/2005/WORLD/asiapcf/09/29/birdflu.un/]