Global regularity and stability of solutions to obstacle problems with nonstandard growth
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156(2), 121–140 (2001)
Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)
Alkhutov, Y.A.: The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differ. Equ. 33(12), 1653–1663 (1997)
Alkhutov, Y.A., Krasheninnikova, O.V.: Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition. Izv. Ross. Akad. Nauk Ser. Mat. 68(6), 3–60 (2004)
Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)
Diening, L.: Maximal function on generalized Lebesgue spaces $L\sp {p(\cdot)}$ . Math. Inequal. Appl. 7(2), 245–253 (2004)
Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)
Eleuteri, M.: Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 7-B(8), 129–157 (2004)
Eleuteri, M., Habermann, J.: Regularity results for a class of obstacle problems under non standard growth conditions. J. Math. Anal. Appl. 344(2), 1120–1142 (2008)
Eleuteri, M., Habermann, J.: A Hölder continuity result for a class of obstacle problems under non standard growth conditions. Math. Nachr. 284(11–12), 1404–1434 (2011)
Eleuteri, M., Habermann, J.: Calderón-Zygmund type estimates for a class of obstacle problems with p(x) growth. J. Math. Anal. Appl. 372(1), 140–161 (2010)
Eleuteri, M., Harjulehto, P., Lukkari, T.: Global regularity and stability of solutions to elliptic equations with nonstandard growth. Complex Var. Elliptic Equ. 56(7–9), 599–622 (2011). doi: 10.1080/17476930903568399
Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal., Theory Methods Appl. 36(3(A)), 295–318 (1999)
Gariepy, R., Ziemer, W.P.: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Arch. Ration. Mech. Anal. 67(1), 25–39 (1977)
Gongbao, L., Martio, O.: Stability of solutions of varying degenerate elliptic equations. Indiana Univ. Math. J. 47(3), 873–891 (1998)
Gongbao, L., Martio, O.: Local and global integrability of gradients in obstacle problems. Ann. Acad. Sci. Fenn. 19, 25–34 (1994)
Gongbao, L., Martio, O.: Stability and higher integrability of derivatives of solutions in double obstacle problems. J. Math. Anal. Appl. 272, 19–29 (2002)
Giaquinta, M.: Multiple Integrals in the Calculus of Variations. Princeton University Press, Princeton (1983)
Harjulehto, P.: Variable exponent Sobolev spaces with zero boundary values. Math. Bohem. 132(2), 125–136 (2007)
Harjulehto, P., Hästö, P., Koskenoja, M., Lukkari, T., Marola, N.: An obstacle problem and superharmonic functions with nonstandard growth. Nonlinear Anal. 67, 3424–3440 (2007)
Harjulehto, P., Hästö, P., Lê, Ú.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551–4574 (2010)
Harjulehto, P., Kinnunen, J., Lukkari, T.: Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl. (2007), Art. ID 48348, 20 pp.
Hästö, P.: On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam. 23(1), 215–237 (2007)
Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, Mineola (2006). Unabridged republication of the 1993 original
Hurri, R.: Poincaré domains in ℝ n . Ann. Acad. Sci. Fenn., Math. Diss. 71, 1–42 (1988)
Kilpeläinen, T., Malý, J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Super. Pisa, Ser. IV XIX, 591–613 (1992)
Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172(1), 137–161 (1994)
Kilpeläinen, T., Ziemer, W.P.: Pointwise regularity of solutions to nonlinear double obstacle problems. Ark. Mat. 29(1), 83–106 (1991)
Kováčik, O., Rákosník, J.: On spaces L p(x) and W 1,p(x). Czechoslov. Math. J. 41(116), 592–618 (1991)
Latvala, V., Lukkari, T., Toivanen, O.: The fundamental convergence theorem for p(⋅)-superharmonic functions. Potential Anal. 35(4), 329–351 (2011). doi: 10.1007/s11118-010-9215-8
Lukkari, T.: Boundary continuity of solutions to elliptic equations with nonstandard growth. Manuscr. Math. 132(3–4), 463–482 (2010)
Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51. Am. Math. Soc., Providence (1997)
Maz’ya, V.G.: The continuity at a boundary point of the solutions of quasilinear elliptic equations. Vestn. Leningr. Univ. 25, 42–55 (1970). English translation: Vestnik Leningrad, Univ. Math. 3, 225–242 (1976)
Michael, J.H., Ziemer, W.P.: Interior regularity for solutions to obstacle problems. Nonlinear Anal. 10(12), 1427–1448 (1986)
Michael, J.H., Ziemer, W.P.: Existence of solutions to obstacle problems. Nonlinear Anal. 17(1), 45–71 (1991)
Ouaro, S., Traore, S.: Entropy solutions to the obstacle problem for nonlinear elliptic problems with variable exponent and L 1-data. Pac. J. Optim. 5(1), 127–141 (2009)
Rodrigues, J.F., Sanchón, M., Urbano, J.M.: The obstacle problem for nonlinear elliptic equations with variable growth and L 1-data. Monatsch. Math. 154, 303–322 (2008)
Rodrigues, J.F., Teymurazyan, R.: On the two obstacle problem in Orlicz–Sobolev spaces and applications. Complex Var. Elliptic Equ. 56(7–9), 769–787 (2011). doi: 10.1080/17476933.2010.505016
Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Heidelberg (2000)
Samko, S.: Denseness of $C\sp\infty\sb0(\bold R\sp N)$ in the generalized Sobolev spaces $W\sp{M,P(X)}(\bold R\sp N)$ . In: Direct and Inverse Problems of Mathematical Physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput., vol. 5, pp. 333–342. Kluwer Academic, Dordrecht (2000)
Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR, Ser. Mat. 50(4), 675–710 (1986)
Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3(2), 249–269 (1995)
Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5(1), 105–116 (1997)