Sử dụng phân bón nitơ và phốt pho toàn cầu cho sản xuất nông nghiệp trong nửa thế kỷ qua: điểm nóng thay đổi và sự mất cân bằng dinh dưỡng

Earth System Science Data - Tập 9 Số 1 - Trang 181-192
Chaoqun Lü1,2, Hanqin Tian2,3
1Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
2International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA
3State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

Tóm tắt

Tóm tắt. Ngoài việc nâng cao năng suất nông nghiệp, việc áp dụng phân bón tổng hợp nitơ (N) và phốt pho (P) trên đất trồng đại trà đã thay đổi đáng kể ngân sách dinh dưỡng toàn cầu, chất lượng nước, sự cân bằng khí nhà kính và các phản hồi của chúng đến hệ thống khí hậu. Tuy nhiên, do thiếu dữ liệu đầu vào phân bón mang tính địa lý, các nghiên cứu hệ thống Trái đất và mô hình bề mặt đất hiện tại phải bỏ qua hoặc sử dụng dữ liệu đơn giản hóa quá mức (ví dụ, sử dụng phân bón đồng nhất và tĩnh) để mô tả đầu vào N và P nông nghiệp trong các giai đoạn kéo dài hàng thập kỷ hoặc thế kỷ. Do đó, trong nghiên cứu này, chúng tôi phát triển dữ liệu lưới chuỗi thời gian toàn cầu về tỷ lệ sử dụng phân bón tổng hợp N và P hàng năm trên đất nông nghiệp, khớp với bản đồ sử dụng đất lịch sử HYDE 3.2, với độ phân giải 0.5° × 0.5° vĩ độ-kinh độ trong giai đoạn 1961–2013. Dữ liệu của chúng tôi chỉ ra rằng tỷ lệ sử dụng phân bón N và P trên một đơn vị diện tích canh tác đã tăng khoảng 8 lần và 3 lần, tương ứng, kể từ năm 1961 khi các cuộc khảo sát của IFA (Hiệp hội Công nghiệp Phân bón Quốc tế) và FAO (Tổ chức Lương thực và Nông nghiệp) về đầu vào phân bón cấp quốc gia có sẵn. Xét về sự mở rộng đất trồng, sự gia tăng tiêu thụ phân bón tổng thể còn lớn hơn. Điểm nóng của việc áp dụng phân bón nông nghiệp N đã chuyển từ Hoa Kỳ và Tây Âu trong thập niên 1960 đến Đông Á vào đầu thế kỷ 21. Đầu vào phân bón P cho thấy một mô hình tương tự với một điểm nóng hiện tại bổ sung ở Brazil. Chúng tôi nhận thấy sự gia tăng toàn cầu về tỷ lệ N/P phân bón là 0.8 g N/g P mỗi thập kỷ (p<0.05) trong giai đoạn 1961–2013, điều này có thể có ý nghĩa quan trọng toàn cầu đối với tác động của con người lên chức năng hệ sinh thái lâu dài. Dữ liệu của chúng tôi có thể phục vụ như một trong những động cơ quan trọng đầu vào cho các mô hình khu vực và toàn cầu để đánh giá tác động của sự làm giàu dinh dưỡng đến hệ thống khí hậu, nguồn tài nguyên nước, an ninh lương thực, v.v. Các tập dữ liệu có sẵn tại doi:10.1594/PANGAEA.863323.

Từ khóa

#phân bón tổng hợp #nitơ #phốt pho #sản xuất nông nghiệp #điểm nóng #mất cân bằng dinh dưỡng.

Tài liệu tham khảo

Banger, K., Tian, H., Tao, B., Ren, W., Pan, S., Dangal, S., and Yang, J.: Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes, Climatic Change, 132, 575–588, 2015.

Bouwman, A. F., Van Drecht, G., Knoop, J. M., Beusen, A. H. W., and Meinardi, C. R.: Exploring changes in river nitrogen export to the world's oceans, Global Biogeochem. Cy., 19, GB1002, https://doi.org/10.1029/2004GB002314, 2005.

Bouwman, A. F., Beusen, A. H. W., and Billen, G.: Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050, Global Biogeochem. Cy., 23, GB0A04, https://doi.org/10.1029/2009GB003576, 2009.

Bouwman, A. F., Beusen, A. H. W., Griffioen, J., Van Groenigen, J. W., Hefting, M. M., Oenema, O., Van Puijenbroek, P. J. T. M., Seitzinger, S., Slomp, C. P., and Stehfest, E.: Global trends and uncertainties in terrestrial denitrification and N2O emissions, Philos. T. R. Soc. B, 368, 20130112, https://doi.org/10.1098/rstb.2013.0112, 2013b.

Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H., Van Vuuren, D. P., Willems, J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period, P. Natl. Acad. Sci., 110, 20882–20887, 2013a.

Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., and Smith, V. H.: Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl., 8, 559–568, 1998.

Elser, J. J., Sterner, R. W., Gorokhova, E., Fagan, W. F., Markow, T. A., Cotner, J. B., Harrison, J. F., Hobbie, S. E., Odell, G. M., and Weider, L. W.: Biological stoichiometry from genes to ecosystems, Ecol. Lett., 3, 540–550, 2000.

Elser, J. J., Andersen, T., Baron, J. S., Bergström, A. K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., and Hessen, D. O.: Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition, Science, 326, 835–837, 2009.

Erisman, J. W. and Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of ammonia synthesis changed the world, Nat. Geosci., 1, 636–639, 2008.

FAOSTAT (Food and Agriculture Organization Corporate Statistical Database): FAO online database, available at: http://faostat3.fao.org/browse/G1/*/E (last access: 5 January 2017), 2015.

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., and Karl, D. M.: Nitrogen cycles: past, present, and future, Biogeochem., 70, 153–226, 2004.

Global Administrative Areas: GADM database of Global Administrative Areas, version 2.0, availanle at: http://www.gadm.org (last access: 5 January 2017), 2012.

Green, P. A., Vörösmarty, C. J., Meybeck, M., Galloway, J. N., Peterson, B. J., and Boyer, E. W.: Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology, Biogeochemistry, 68, 71–105, 2004.

Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M., and Zhang, F. S.: Significant acidification in major Chinese croplands, Science, 327, 1008–1010, 2010.

Güsewell, S.: N:P ratios in terrestrial plants: variation and functional significance, New Phytol., 164, 243–266, 2004.

Güsewell, S., Bailey, K. M., Roem, W. J., and Bedford, B. L.: Nutrient limitation and botanical diversity in wetlands: can fertilisation raise species richness?, Oikos, 109, 71–80, 2005.

Heffer, P.: Assessment of fertilizer use by crop at the global level 2010–2010/11, International Fertilizer Industry Association, Paris, available at: http://www.fertilizer.org/ItemDetail?iProductCode=9592Pdf&amp;amp;Category=STAT&amp;amp;WebsiteKey (last access: 15 December 2017) 2013.

Ivanova, S. and Nosov, V.: Development of agriculture in Russia and its impact on fertilizer use, International Plant Nutrition Institute, available at: http://eeca-en.ipni.net/article/EECAEN-2025, 2011.

Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P., Zhu, Z. L., and Zhang, F. S.: Reducing environmental risk by improving N management in intensive Chinese agricultural systems, P. Natl. Acad. Sci. USA, 106, 3041–3046, 2009.

Klein Goldewijk, K.: A historical land use data set for the Holocene; HYDE 3.2, DANS, https://doi.org/10.17026/dans-znk-cfy3, 2016.

Knecht, M. F. and Göransson, A.: Terrestrial plants require nutrients in similar proportions, Tree Physiol., 24, 447–460, 2004.

Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., and Garnier, J.: 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland, Environ. Res. Lett., 9, p. 105011, 2014.

Liu, M. and Tian, H.: China's land cover and land use change from 1700 to 2005: Estimations from high-resolution satellite data and historical archives, Global Biogeochem. Cy., 24, GB3003, https://doi.org/10.1029/2009GB003687, 2010.

Lu, C. and Tian, H.: Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model, Glob. Change Biol., 19, 571–588, 2013.

Lu, C. and Tian, H.: Half-degree gridded nitrogen and phosphorus fertilizer use for global agriculture production during 1900–2013, https://doi.org/10.1594/PANGAEA.863323, 2016.

Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022, https://doi.org/10.1029/2007GB002947, 2008.

Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., and Van Cleemput, O.: Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle, Nutr. Cycl. Agroecosys., 52, 225–248, 1998.

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A.: Closing yield gaps through nutrient and water management, Nature, 490, 254–257, 2012.

Peñuelas, J., Sardans, J., Rivas-ubach, A., and Janssens, I. A.: The human-induced imbalance between C, N and P in Earth's life system, Glob. Change Biol., 18, 3–6, 2012.

Potter, P., Ramankutty, N., Bennett, E. M., and Donner, S. D.: Characterizing the spatial patterns of global fertilizer application and manure production, Earth Interact., 14, 1–22, 2010.

Seitzinger, S. P., Mayorga, E., Bouwman, A. F., Kroeze, C., Beusen, A. H. W., Billen, G., Van Drecht, G., Dumont, E., Fekete, B. M., Garnier, J., and Harrison, J. A.: Global river nutrient export: A scenario analysis of past and future trends, Global Biogeochem. Cy., 24, GB0A08, https://doi.org/10.1029/2009GB003587, 2010.

Sheldrick, W. F., Syers, J. K., and Lingard, J.: A conceptual model for conducting nutrient audits at national, regional, and global scales, Nutr. Cycl. Agroecosys., 62, 61–72, 2002.

Siebert, S.: Global-scale modeling of nitrogen balances at the soil surface. Frankfurt Hydrol. Pap., 2, 35 pp., Inst. of Phys. Geogr., Frankfurt Univ., Frankfurt am Main, Germany, 2005.

Smil, V.: Nitrogen and food production: proteins for human diets, AMBIO, 31, 126–131, 2002.

Stocker, B. D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Zaehle, S., Bouwman, L., and Prentice, I. C.: Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios, Nature Climate Change, 3, 666–672, 2013.

Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H., and Winiwarter, W.: Too much of a good thing, Nature, 472, 159–161, 2011.

Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., and Lu, C.: Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model, Biogeosciences, 7, 2673–2694, https://doi.org/10.5194/bg-7-2673-2010, 2010.

Tian, H., Lu, C., Melillo, J., Ren, W., Huang, Y., Xu, X., Liu, M., Zhang, C., Chen, G., Pan, S., and Liu, J.: Food benefit and climate warming potential of nitrogen fertilizer uses in China, Environ. Res. Lett.,7, 044020, https://doi.org/10.1088/1748-9326/7/4/044020, 2012.

Tian, H., Banger, K., Bo, T., and Dadhwal, V. K.: History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives, Global Planet. Change, 121, 78–88, 2014.

Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B., Banger, K., Tao, B., Pan, S., Liu, M., and Zhang, C.: Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes, Ecosystem Health and Sustainability, 1, 1–20, 2015.

Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., Huntzinger, D. N., Gurney, K. R., Sitch, S., Zhang, B., Yang, J., Bousquet, P., Bruhwiler, L., Chen, G., Dlugokencky, E., Friedlingstein, P., Melillo, J., Pan, S., Poulter, B., Prinn, R., Saunois, M., Schwalm, C. R., and Wofsy, S. C.: The terrestrial biosphere as a net source of greenhouse gases to the atmosphere, Nature, 531, 225–228, 2016.

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S.: Agricultural sustainability and intensive production practices, Nature, 418, 671–677, 2002.

Van der Hoek, K. W. and Bouwman, A. F.: Upscaling of nutrient budgets from agroecological niche to global scale, in: Nutrient disequilibria in agroecosystems, edited by: Smaling, E. M. A., Oenema, O., and Fresco, L. O., Wallingford, CABI Publishing, 57–73, 1999.

Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M.: Human domination of Earth's ecosystems, Science, 277, 494–499, 1997.

Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A., Matson, P. A., and Nziguheba, G.: Nutrient imbalances in agricultural development, Science, 324, 1519–1520, 2009.

Zaehle, S., Ciais, P., Friend, A. D., and Prieur, V.: Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nat. Geosci., 4, 601–605, 2011.

Zhang, C., Tian, H., Liu, J., Wang, S., Liu, M., Pan, S., and  Shi, X.: Pools and distributions of soil phosphorus in China, Global Biogeochem. Cy., 19, GB1020, https://doi.org/10.1029/2004GB002296, 2005.