Global mapping of surface 500-m anthropogenic heat flux supported by multi-source data
Tài liệu tham khảo
Afshari, 2018, Estimation of the traffic related anthropogenic heat release using BTEX measurements – a case study in Abu Dhabi, Urban Clim., 24, 311, 10.1016/j.uclim.2017.02.001
Allen, 2011, Global to city scale urban anthropogenic heat flux: model and variability, Int. J. Climatol., 31, 1990, 10.1002/joc.2210
Chen, 2014, Anthropogenic heat release: estimation of global distribution and possible climate effect, J. Meteorol. Soc. Jpn., 92A, 157, 10.2151/jmsj.2014-A10
Chen, 2016, Exploring the possible effect of anthropogenic heat release due to global energy consumption upon global climate: a climate model study, Int. J. Climatol., 36, 4790, 10.1002/joc.4669
Chen, 2019, Seasonal climatic effects and feedbacks of anthropogenic heat release due to global energy consumption with CAM5, Clim. Dyn., 52, 6377, 10.1007/s00382-018-4528-1
Chow, 2014, A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes, Atmos. Environ., 99, 64, 10.1016/j.atmosenv.2014.09.053
de Munck, 2013, How much can air conditioning increase air temperatures for a city like Paris, France?, Int. J. Climatol., 33, 210, 10.1002/joc.3415
Doan, 2019, Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: numerical experiments with a regional climate model, Sustain. Cities Soc., 47, 10.1016/j.scs.2019.101479
Dong, 2017, Global anthropogenic heat flux database with high spatial resolution, Atmos. Environ., 150, 276, 10.1016/j.atmosenv.2016.11.040
EIA
Elvidge, 2017, VIIRS night-time lights, Int. J. Remote Sens., 38, 1
Ferreira, 2011, Anthropogenic heat in the city of São Paulo, Brazil. Theor. Appl. Climatol., 104, 43, 10.1007/s00704-010-0322-7
Firozjaei, 2020, Surface anthropogenic heat islands in six megacities: an assessment based on a triple-source surface energy balance model, Remote Sens. Environ., 242, 10.1016/j.rse.2020.111751
Flanner, 2009, Integrating anthropogenic heat flux with global climate models, Geophys. Res. Lett., 36, 270, 10.1029/2008GL036465
Guo, 2021, Estimating socio-economic parameters via machine learning methods using Luojia1-01 nighttime light remotely sensed images at multiple scales of China in 2018, IEEE. Access., 99, 1
He, 2020, Estimating spatial effects of anthropogenic heat emissions upon the urban thermal environment in an urban agglomeration area in East China, Sustain. Cities Soc., 57, 10.1016/j.scs.2020.102046
Hu, 2020
Huber, 2012, Anthropogenic and natural warming inferred from changes in Earth’s energy balance, Nat. Geosci., 5, 31, 10.1038/ngeo1327
Iamarino, 2012, High-resolution (space, time) anthropogenic heat emissions: London 1970–2025, Int. J. Climatol., 32, 1754, 10.1002/joc.2390
Jiang, 2019, An image layer difference index method to extract light area from NPP/VIIRS nighttime light monthly data, Int. J. Remote Sens., 40, 4839, 10.1080/01431161.2019.1574993
Jin, 2019, A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series, Sci. Data., 6, 139, 10.1038/s41597-019-0143-1
Kato, 2005, Analysis of urban heat-island effect using ASTER and ETM+ data: separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux, Remote Sens. Environ., 99, 44, 10.1016/j.rse.2005.04.026
Li, 2013, A multi-resolution ensemble study of a tropical urban environment and its interactions with the background regional atmosphere, J. Geophys. Res. Atmos., 118, 9804, 10.1002/jgrd.50795
Lindberg, 2013, Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015, Urban Clim., 4, 1, 10.1016/j.uclim.2013.03.002
Liu, 2021, Estimating multi-temporal anthropogenic heat flux based on the top-down method and temporal downscaling methods in Beijing, China, Resour. Conserv. Recycl., 172, 10.1016/j.resconrec.2021.105682
Ma, 2018, Delineating Spatial Patterns in Human Settlements Using VIIRS Nighttime Light Data: A Watershed-Based Partition Approach., Remote Sens, 10, 10.3390/rs10030465
Man, 2015, Modeling of anthropogenic heat flux using HJ-1B Chinese small satellite image: a study of heterogeneous urbanized areas in Hong Kong, IEEE. Geosci. Remote. S., 12, 1466, 10.1109/LGRS.2015.2409111
Mccarthy, 2010, Climate change in cities due to global warming and urban effects, Geophys. Res. Lett., 37, 1, 10.1029/2010GL042845
Menberg, 2013, Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island, Environ. Sci. Technol., 47, 9747, 10.1021/es401546u
Molnár, 2020, How does anthropogenic heating affect the thermal environment in a medium-sized central European city? A case study in Szeged, Hungary, Urban Clim., 34, 10.1016/j.uclim.2020.100673
NOAA
OAK
Park, 2016, Comparative estimates of anthropogenic heat emission in relation to surface energy balance of a subtropical urban neighborhood, Atmos. Environ., 126, 182, 10.1016/j.atmosenv.2015.11.038
Pigeon, 2007, Anthropogenic heat release in an old European agglomeration (Toulouse, France), Int. J. Climatol., 27, 1969, 10.1002/joc.1530
Ryu, 2013, Effects of anthropogenic heat on ozone air quality in a megacity, Atmos. Environ., 80, 20, 10.1016/j.atmosenv.2013.07.053
Sailor, 2004, A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas, Atmos. Environ., 38, 2737, 10.1016/j.atmosenv.2004.01.034
Sailor, 2015, Development of a national anthropogenic heating database with an extrapolation for international cities, Atmos. Environ., 118, 7, 10.1016/j.atmosenv.2015.07.016
Salamanca, 2013, Assessing summertime urban air conditioning consumption in a semiarid environment, Environ. Res. Lett., 8, 022
Salamanca, 2014, Anthropogenic heating of the urban environment due to air conditioning, J. Geophys. Res. Atmos., 119, 5949, 10.1002/2013JD021225
Sharma, 2016, Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data, Int. J. Digit. Earth., 1004, 1020
United Nations
Vargo, 2020, Anthropogenic warming forces extreme annual glacier mass loss, Nat. Clim. Chang., 10, 856, 10.1038/s41558-020-0849-2
Varquez, 2021, Global 1-km present and future hourly anthropogenic heat flux, Sci. Data., 8, 64, 10.1038/s41597-021-00850-w
Wang, 2019, A partition modeling for anthropogenic heat flux mapping in China, Remote. Sens-Basel., 11, 1132, 10.3390/rs11091132
Wang, 2020, Anthropogenically-driven increases in the risks of summertime compound hot extremes, Nat. Commun., 11528
Wang, 2020, Mapping China’s time-series anthropogenic heat flux with inventory method and multi-source remotely sensed data, Sci. Total Environ., 734, 10.1016/j.scitotenv.2020.139457
Xie, 2016, Changes in regional meteorology induced by anthropogenic heat and their impacts on air quality in South China, Atmos. Chem. Phys., 16, 15011, 10.5194/acp-16-15011-2016
Yang, 2017, A new global anthropogenic heat estimation based on high-resolution nighttime light data, Sci. Data., 4, 10.1038/sdata.2017.116
Yu, 2021, Impact of heat storage on remote-sensing based quantification of anthropogenic heat in urban environments, Remote Sens. Environ., 262, 10.1016/j.rse.2021.112520
Zhang, 2019, Satellite-based detection and characterization of industrial heat sources in China environ, Sci. Technol., 53, 11031, 10.1021/acs.est.9b02643
Zheng, 2018, High spatial- and temporal-resolution anthropogenic heat discharge estimation in Los Angeles County, California, J. Environ. Manag., 206, 1274, 10.1016/j.jenvman.2017.07.047
Zhong, 2019, Research on SNPP-VIIRS night light image denoising method, Bull. Survey. Map., 3, 21
Ziaul, 2018, Anthropogenic heat flux in English bazar town and its surroundings in West Bengal, India, Remote Sens. Appl.: Soc. Environ., 11, 151