Global fuel moisture content mapping from MODIS
International Journal of Applied Earth Observation and Geoinformation - Tập 101 - Trang 102354 - 2021
Tài liệu tham khảo
Al-Moustafa, 2012, Mapping fuel moisture content in upland vegetation using airborne hyperspectral imagery, Remote Sens Environ, 127, 74, 10.1016/j.rse.2012.08.034
Argañaraz, 2015, Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina, Science of The Total Environment, 520, 1, 10.1016/j.scitotenv.2015.02.081
Arganaraz, 2016, Estimation of Live Fuel Moisture Content From MODIS Images for Fire Danger Assessment in Southern Gran Chaco, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 5339, 10.1109/JSTARS.2016.2575366
Bicheron, 1999, A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model, Remote Sens Environ, 67, 251, 10.1016/S0034-4257(98)00083-2
Bowyer, 2004, Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level, Remote Sens Environ, 92, 297, 10.1016/j.rse.2004.05.020
Caccamo, 2012, Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data, International Journal of Wildland Fire, 21, 257, 10.1071/WF11024
Casas, 2014, Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response, Remote Sens. Environ., 148, 28, 10.1016/j.rse.2014.03.011
Ceccato, 2002, Designing a spectral index to estimate vegetation water content from remote sensing data, Remote Sens Environ, 82, 198, 10.1016/S0034-4257(02)00036-6
Cheng, 2014, Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis, Remote Sens Environ, 143, 39, 10.1016/j.rse.2013.11.018
Cheng, 2006, Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes, Remote Sensing of Environment, 105, 354, 10.1016/j.rse.2006.07.005
Chladil, 1995, Assessing Grassland Moisture and Biomass in Tasmania - the Application of Remote-Sensing and Empirical-Models for a Cloudy Environment, International Journal of Wildland Fire, 5, 165, 10.1071/WF9950165
Chuvieco, 2003, Design of an empirical index to estimate fuel moisture content from NOAA-AVHRR images in forest fire danger studies, International Journal of Remote Sensing, 24, 1621, 10.1080/01431160210144660b
Chuvieco, 2004, Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment, Canadian Journal of Forest Research, 34, 2284, 10.1139/x04-101
Chuvieco, 2010, Development of a framework for fire risk assessment using remote sensing and geographic information system technologies, Ecol Model, 221, 46, 10.1016/j.ecolmodel.2008.11.017
Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martı́nez-Vega, J., de la Riva, J., Pérez, F., 2004b. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92, 322-331.
Chuvieco, 2002, Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment, Int. J. Remote Sens., 23, 2145, 10.1080/01431160110069818
Combal, 2003, Retrieval of canopy biophysical variables from bidirectional reflectance - Using prior information to solve the ill-posed inverse problem, Remote Sens Environ, 84, 1, 10.1016/S0034-4257(02)00035-4
Combal, 2003, Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem, Remote sensing of environment, 84, 1, 10.1016/S0034-4257(02)00035-4
Darvishzadeh, 2008, Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland, Remote Sens Environ, 112, 2592, 10.1016/j.rse.2007.12.003
Dawson, 1998, LIBERTY - Modeling the effects of leaf biochemical concentration on reflectance spectra, Remote Sens Environ, 65, 50, 10.1016/S0034-4257(98)00007-8
De Santis, 2009, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sens. Environ., 113, 126, 10.1016/j.rse.2008.08.008
Dennison, 2008, Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California, International Journal of Wildland Fire, 17, 18, 10.1071/WF07017
Dennison, 2003, Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index, Remote Sens Environ, 88, 442, 10.1016/j.rse.2003.08.015
Fan, 2018, Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region, Remote Sens. Environ., 205, 210, 10.1016/j.rse.2017.11.020
Fang, 2003, Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model, Remote sensing of environment, 85, 257, 10.1016/S0034-4257(03)00005-1
Feret, 2008, PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments, Remote Sens Environ, 112, 3030, 10.1016/j.rse.2008.02.012
Feret, 2011, Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling, Remote Sens Environ, 115, 2742, 10.1016/j.rse.2011.06.016
García-Haro, 2020, A global canopy water content product from AVHRR/Metop, Isprs J Photogramm, 162, 77, 10.1016/j.isprsjprs.2020.02.007
García, 2008, Combining AVHRR and meteorological data for estimating live fuel moisture content, Remote Sens Environ, 112, 3618, 10.1016/j.rse.2008.05.002
García, 2020, A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models, Remote Sens-Basel, 12, 1714, 10.3390/rs12111714
Gorelick, 2017
Hao, 2007, Retrieval of real-time live fuel moisture content using MODIS measurements, Remote Sens Environ, 108, 130, 10.1016/j.rse.2006.09.033
Hosgood, B., Jacquemoud, S., Andreoli, G., Verdebout, J., Pedrini, G., Schmuck, G., 1995. Leaf optical properties experiment 93 (LOPEX93). Ispra Italy’European Commission, Joint Research Centre Institute of Remote Sensing Applications.
Houborg, 2007, Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data, Remote Sens Environ, 106, 39, 10.1016/j.rse.2006.07.016
Huemmrich, 2001, The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance, Remote Sens Environ, 75, 423, 10.1016/S0034-4257(00)00184-X
Johnston, 2020, Unprecedented health costs of smoke-related PM 2.5 from the 2019–20 Australian megafires, Nature Sustainability, 1
Jolly, 2007, Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture, International Journal of Wildland Fire, 16, 503, 10.1071/WF06077
Jurdao, 2013, Regional estimation of woodland moisture content by inverting Radiative Transfer Models, Remote Sens Environ, 132, 59, 10.1016/j.rse.2013.01.004
Kruse, 1993, The Spectral Image-Processing System (Sips) - Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote Sens. Environ., 44, 145, 10.1016/0034-4257(93)90013-N
Kuusk, 1991
Leblon, 2002, Fire danger monitoring using ERS-1 SAR images in the case of northern boreal forests, Natural Hazards, 27, 231, 10.1023/A:1020375721520
Leonenko, 2013, Statistical distances and their applications to biophysical parameter estimation: Information measures, M-estimates, and minimum contrast methods, Remote Sens-Basel, 5, 1355, 10.3390/rs5031355
Liao, 2015, Modified enhanced vegetation index for reducing topographic effects, J Appl Remote Sens, 9, 10.1117/1.JRS.9.096068
Littell, 2016, A review of the relationships between drought and forest fire in the United States, Global change biology, 22, 2353, 10.1111/gcb.13275
Luo, 2019, Effects of Live Fuel Moisture Content on Wildfire Occurrence in Fire-Prone Regions over Southwest China, Forests, 10, 887, 10.3390/f10100887
Lymburner, L., Tan, P., Mueller, N., Thackway, R., Thankappan, M., Islam, A., Lewis, A., Randall, L., Senarath, U., 2011. In: T.R.R. 2011/031 (Ed.), The National Dynamic Land Cover Dataset. .
Matsushita, 2007, Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest, Sensors (Basel), 7, 2636, 10.3390/s7112636
Matthews, 2010, Effect of drying temperature on fuel moisture content measurements, International Journal of Wildland Fire, 19, 800, 10.1071/WF08188
Meroni, 2004, Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations, Remote Sens Environ, 92, 195, 10.1016/j.rse.2004.06.005
Moorthy, 2008, Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level, Remote Sens Environ, 112, 2824, 10.1016/j.rse.2008.01.013
Moritz, 2012, Climate change and disruptions to global fire activity, Ecosphere, 3, 1, 10.1890/ES11-00345.1
Myneni, 2002, Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens Environ, 83, 214, 10.1016/S0034-4257(02)00074-3
Neinavaz, 2017, Retrieving vegetation canopy water content from hyperspectral thermal measurements, Agr Forest Meteorol, 247, 365, 10.1016/j.agrformet.2017.08.020
Nolan, 2016, Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia, Geophys Res Lett, 43, 4229, 10.1002/2016GL068614
Paltridge, 1988, Monitoring grassland dryness and fire potential in australia with NOAA/AVHRR data, Remote Sensing of Environment, 25, 381, 10.1016/0034-4257(88)90110-1
Peterson, 2008, Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sens. Environ., 112, 4272, 10.1016/j.rse.2008.07.012
Pimont, 2019, Why is the effect of live fuel moisture content on fire rate of spread underestimated in field experiments in shrublands?, International Journal of Wildland Fire, 28, 127, 10.1071/WF18091
Quan, 2015, A Bayesian Network-Based Method to Alleviate the Ill-Posed Inverse Problem: A Case Study on Leaf Area Index and Canopy Water Content Retrieval, Ieee T Geosci Remote, 53, 6507, 10.1109/TGRS.2015.2442999
Quan, 2016, Retrieval of Grassland Live Fuel Moisture Content by Parameterizing Radiative Transfer Model With Interval Estimated LAI, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 910, 10.1109/JSTARS.2015.2472415
Quan, 2017, Retrieval of forest fuel moisture content using a coupled radiative transfer model, Environ Modell Softw, 95, 290, 10.1016/j.envsoft.2017.06.006
Quan, 2021, Application of Landsat ETM+ and OLI Data for Foliage Fuel Load Monitoring Using Radiative Transfer Model and Machine Learning Method, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10.1109/JSTARS.2021.3062073
Quan, 2017, A radiative transfer model-based method for the estimation of grassland aboveground biomass, Int. J. Appl. Earth Obs., 54, 159
Rao, 2020, SAR-enhanced mapping of live fuel moisture content, Remote Sens Environ, 245, 111797, 10.1016/j.rse.2020.111797
Riaño, 2005, Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level, Ieee T Geosci Remote, 43, 819, 10.1109/TGRS.2005.843316
Roberts, 2006, Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California, J Geophys Res-Biogeo, 111, 10.1029/2005JG000113
Schlerf, 2006, Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data, Remote Sens Environ, 100, 281, 10.1016/j.rse.2005.10.006
Sulla-Menashe, 2019, Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens Environ, 222, 183, 10.1016/j.rse.2018.12.013
Tanase, 2015, Monitoring live fuel moisture in semiarid environments using L-band radar data, International Journal of Wildland Fire, 24, 560, 10.1071/WF14149
Trombetti, 2008, Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA, Remote Sens Environ, 112, 203, 10.1016/j.rse.2007.04.013
Verbesselt, 2007, Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems, Remote Sens Environ, 108, 357, 10.1016/j.rse.2006.11.019
Verhoef, 1984, Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model, Remote Sens Environ, 16, 125, 10.1016/0034-4257(84)90057-9
Verhoef, 1998, Theory of radiative transfer models applied in optical remote sensing of vegetation canopies, Prof.
Verhoef, 2007, Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data, Remote Sens Environ, 109, 166, 10.1016/j.rse.2006.12.013
Verrelst, 2013, Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions, IEEE Transactions on Geoscience & Remote Sensing, 52, 257, 10.1109/TGRS.2013.2238242
Verrelst, 2014, Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from Sentinel-2 and-3 data: Role of cost functions, Ieee T Geosci Remote, 52, 257, 10.1109/TGRS.2013.2238242
Verrelst, 2015, Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods – A comparison, Isprs J Photogramm, 108, 260, 10.1016/j.isprsjprs.2015.04.013
Wang, 2013, Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices, Remote Sens Environ, 129, 103, 10.1016/j.rse.2012.10.027
Wang, 2019, Assessment of the Dual Polarimetric Sentinel-1A Data for Forest Fuel Moisture Content Estimation, Remote Sens-Basel, 11, 1568, 10.3390/rs11131568
Ward, 2020, Impact of 2019–2020 mega-fires on Australian fauna habitat, Nature Ecology & Evolution, 1
Weise, D.R., Hartford, R.A., Mahaffey, L., 1998. Assessing live fuel moisture for fire management applications. Assessing Live Fuel Moisture For Fire Management Applications. Pages 49-55 in Teresa L. Pruden and Leonard A. Brennan (eds.).
Xiong, 2020, MODIS and VIIRS Calibration History and Future Outlook, Remote Sens-Basel, 12, 2523, 10.3390/rs12162523
Yebra, 2009, Generation of a Species-Specific Look-Up Table for Fuel Moisture Content Assessment, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2, 21, 10.1109/JSTARS.2009.2014008
Yebra, 2009, Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: Solving the ill-posed inverse problem, Remote Sens Environ, 113, 2403, 10.1016/j.rse.2009.07.001
Yebra, 2008, Estimation of live fuel moisture content from MODIS images for fire risk assessment, Agr Forest Meteorol, 148, 523, 10.1016/j.agrformet.2007.12.005
Yebra, 2013, A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products, Remote Sens Environ, 136, 455, 10.1016/j.rse.2013.05.029
Yebra, 2018, A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing, Remote Sens. Environ., 212, 260, 10.1016/j.rse.2018.04.053
Yebra, 2019, Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications, Sci Data, 6, 155, 10.1038/s41597-019-0164-9
Yebra, M., Dijk, A.v., Cary, G.J., 2018b. Evaluation of the feasibility and benefits of operational use of alternative satellite data in the Australian Flammability Monitoring System to ensure long-term data continuity. Bushfire and Natural Hazards CRC, Melbourne.
Youngentob, 2016, A simple and effective method to collect leaves and seeds from tall trees, Methods Ecol. Evol., 7, 1119, 10.1111/2041-210X.12554
Zarco-Tejada, 2005, Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy, Remote Sens Environ, 99, 271, 10.1016/j.rse.2005.09.002
Zarco-Tejada, 2004, Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies, Remote Sens Environ, 89, 189, 10.1016/j.rse.2002.06.002