Global existence for some radial, low regularity nonlinear Schrödinger equations

Journal of Functional Analysis - Tập 258 - Trang 2373-2421 - 2010
Benjamin Dodson1
1University of California – Riverside, Department of Mathematics, 900 University Ave., Riverside, CA 92521, United States

Tài liệu tham khảo

Bourgain, 1998, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., 5, 253, 10.1155/S1073792898000191 Cazenave, 1988, The Cauchy problem for the nonlinear Schrödinger equation in H1, Manuscripta Math., 61, 477, 10.1007/BF01258601 Cazenave, 1990, The Cauchy problem for the nonlinear Schrödinger equation in Hs, Nonlinear Anal., 14, 807, 10.1016/0362-546X(90)90023-A Christ, 2003, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125, 1235, 10.1353/ajm.2003.0040 Christ Christ, 1991, Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equations, J. Funct. Anal., 100, 87, 10.1016/0022-1236(91)90103-C Colliander Colliander, 2002, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett., 9, 659, 10.4310/MRL.2002.v9.n5.a9 Colliander, 2008, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on R3, Comm. Pure Appl. Math., 21, 987 Colliander, 2008, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R3, Ann. of Math. (2), 167, 767, 10.4007/annals.2008.167.767 Colliander, 2008, Resonant decompositions and the I-method for cubic nonlinear Schrödinger equation on R2, Discrete Contin. Dyn. Syst. A, 21, 665, 10.3934/dcds.2008.21.665 De Silva, 2007, Global well-posedness for the L2 critical nonlinear Schrödinger equation in higher dimensions, Commun. Pure Appl. Anal., 6, 1023, 10.3934/cpaa.2007.6.1023 Keel, 1998, Endpoint Strichartz estimates, Amer. J. Math., 120, 955, 10.1353/ajm.1998.0039 Killip Killip, 2008, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. Partial Differential Equation, 1, 229 Ruiz, 1993, On local regularity of Schrödinger equations, Int. Math. Res. Not., 1, 13, 10.1155/S1073792893000029 Pinksy, 1997, Pointwise Fourier inversion: A wave equation approach, J. Fourier Anal. Appl., 3, 647, 10.1007/BF02648262 Stein, 1993, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 Tao, 2006, Nonlinear Dispersive Equations, vol. 106 Taylor, 1991 Taylor, 1996 Taylor, 2006, Short time behavior of solutions to nonlinear Schrödinger equations in one and two space dimensions, Comm. Partial Differential Equations, 31, 945, 10.1080/03605300500361537 Taylor, 2008, Short time behavior of the nonlinear Schrödinger equation II, Canad. J. Math., 60, 1168, 10.4153/CJM-2008-051-3 Visan, 2007, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138, 281, 10.1215/S0012-7094-07-13825-0