Global dimensions of chronic kidney disease of unknown etiology (CKDu): a modern era environmental and/or occupational nephropathy?

Virginia M. Weaver1, Jeffrey J. Fadrowski2, Bernard G. Jaar3
1Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
2Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA
3Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Md USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barsoum RS. Chronic kidney disease in the developing world. N Engl J Med. 2006;354(10):997–9.

Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.

Jayatilake N, Mendis S, Maheepala P, Mehta FR. Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country. BMC Nephrol. 2013;14:180.

Jayasumana C, Gajanayake R, Siribaddana S. Importance of Arsenic and pesticides in epidemic chronic kidney disease in Sri Lanka. BMC Nephrol. 2014;15(1):124.

Redmon JH, Elledge MF, Womack DS, Wickremashinghe R, Wanigasuriya KP, Peiris-John RJ, et al. Additional perspectives on chronic kidney disease of unknown aetiology (CKDu) in Sri Lanka--lessons learned from the WHO CKDu population prevalence study. BMC Nephrol. 2014;15:125.

Almaguer M, Herrera R, Orantes CM. Chronic kidney disease of unknown etiology in agricultural communities. MEDICC Rev. 2014;16(2):9–15.

Siriwardhana EA, Perera PA, Sivakanesan R, Abeysekara T, Nugegoda DB, Weerakoon KG. Is the staple diet eaten in Medawachchiya, Sri Lanka, a predisposing factor in the development of chronic kidney disease of unknown etiology? - A comparison based on urinary beta2-microglobulin measurements. BMC Nephrol. 2014;15:103.

http://www.cao-ombudsman.org/cases/documentlinks/documents/BU_SummaryReport_August122012.pdf .

Wijkstrom J, Leiva R, Elinder CG, Leiva S, Trujillo Z, Trujillo L, et al. Clinical and pathological characterization of Mesoamerican nephropathy: a new kidney disease in Central America. Am J Kidney Dis. 2013;62(5):908–18.

Wijetunge S, Ratnatunga NV, Abeysekera DT, Wazil AW, Selvarajah M, Ratnatunga CN. Retrospective analysis of renal histology in asymptomatic patients with probable chronic kidney disease of unknown aetiology in Sri Lanka. Ceylon Med J. 2013;58(4):142–7.

Nanayakkara S, Komiya T, Ratnatunga N, Senevirathna ST, Harada KH, Hitomi T, et al. Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka. Environ Health Prev Med. 2012;17(3):213–21.

Athuraliya NT, Abeysekera TD, Amerasinghe PH, Kumarasiri R, Bandara P, Karunaratne U, et al. Uncertain etiologies of proteinuric-chronic kidney disease in rural Sri Lanka. Kidney Int. 2011;80(11):1212–21.

De Broe ME. Chinese herbs nephropathy and Balkan endemic nephropathy: toward a single entity, aristolochic acid nephropathy. Kidney Int. 2012;81(6):513–5.

Henderson DA. A follow-up of cases of plumbism in children. Australas Ann Med. 1954;3(3):219–24.

Henderson DA. Chronic nephritis in Queensland. Australas Ann Med. 1955;4(3):163–77.

Inglis JA, Henderson DA, Emmerson BT. The pathology and pathogenesis of chronic lead nephropathy occurring in Queensland. J Pathol. 1978;124(2):65–76.

Henderson DA, Inglis JA. The lead content of bone in chronic Bright’s disease. Australas Ann Med. 1957;6(2):145–54.

Emmerson BT. Chronic lead nephropathy: the diagnostic use of calcium EDTA and the association with gout. Australas Ann Med. 1963;12:310–24.

Loghman-Adham M. Aminoaciduria and glycosuria following severe childhood lead poisoning. Pediatr Nephrol. 1998;12(3):218–21.

Hu H. A 50-year follow-up of childhood plumbism. Hypertension, renal function, and hemoglobin levels among survivors. Am J Dis Child. 1991;145(6):681–7.

Moel DI, Sachs HK. Renal function 17 to 23 years after chelation therapy for childhood plumbism. Kidney Int. 1992;42(5):1226–31.

Steenland K, Selevan S, Landrigan P. The mortality of lead smelter workers: an update. Am J Public Health. 1992;82(12):1641–4.

Chowdhury R, Darrow L, McClellan W, Sarnat S, Steenland K. Incident ESRD among participants in a lead surveillance program. Am J Kidney Dis. 2014;64(1):25–31.

Wedeen RP, Malik DK, Batuman V. Detection and treatment of occupational lead nephropathy. Arch Intern Med. 1979;139(1):53–7.

McClean MD, Amador J, Laws R, Kaufman J, Weiner D, Rodrıguez J, et al. Biological Sampling Report: Investigating Biomarkers of Kidney Injury and Chronic Kidney Disease Among Workers in Western Nicaragua. 2012. 2012.

Nogawa K, Kobayashi E, Honda R, Ishizaki A, Kawano S, Matsuda H. Renal dysfunctions of inhabitants in a cadmium-polluted area. Environ Res. 1980;23(1):13–23.

Nogawa K, Kido T. Biological monitoring of cadmium exposure in itai-itai disease epidemiology. Int Arch Occup Environ Health. 1993;65(1 Suppl):S43–6.

Centers for Disease Control and Prevention. The Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables. Atlanta, GA: Department of Health and Human Services; 2012.

Kido T, Nordberg GF, Roels HA. Cadmium-induced renal effects. In: De Broe ME, Porter GA, Bennett WM, Verpooten GA, editors. Clinical Nephrotoxins: Renal Injury from Drugs and Chemicals. 2nd ed. Dordrecht: Kluwer Academic Publishers; 2003. p. 507–30.

Kido T, Nogawa K, Ishizaki M, Honda R, Tsuritani I, Yamada Y, et al. Long-term observation of serum creatinine and arterial blood pH in persons with cadmium-induced renal dysfunction. Arch Environ Health. 1990;45(1):35–41.

Nishijo M, Morikawa Y, Nakagawa H, Tawara K, Miura K, Kido T, et al. Causes of death and renal tubular dysfunction in residents exposed to cadmium in the environment. Occup Environ Med. 2006;63(8):545–50.

Honda R, Swaddiwudhipong W, Nishijo M, Mahasakpan P, Teeyakasem W, Ruangyuttikarn W, et al. Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett. 2010;198(1):26–32.

Staessen JA, Lauwerys RR, Buchet JP, Bulpitt CJ, Rondia D, Vanrenterghem Y, et al. Impairment of renal function with increasing blood lead concentrations in the general population. The Cadmibel Study Group. N Engl J Med. 1992;327(3):151–6.

Adams RG, Harrison JF, Scott P. The development of cadmium-induced proteinuria, impaired renal function, and osteomalacia in alkaline battery workers. Q J Med. 1969;38(152):425–43.

Roels HA, Lauwerys RR, Buchet JP, Bernard AM, Vos A, Oversteyns M. Health significance of cadmium induced renal dysfunction: a five year follow up. Br J Ind Med. 1989;46(11):755–64.

Wanigasuriya K. Update on uncertain etiology of chronic kidney disease in Sri Lanka’s north-central dry zone. MEDICC Rev. 2014;16(2):61–5.

Weiner DE, McClean MD, Kaufman JS, Brooks DR. The Central American epidemic of CKD. Clin J Am Soc Nephrol. 2013;8(3):504–11.

Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A. Arsenic and Chronic Kidney Disease: A Systematic Review. Curr Environ Health Rep. 2014;1(3):192–207.

Chiu HF, Yang CY. Decreasing trend in renal disease mortality after cessation from arsenic exposure in a previous arseniasis-endemic area in southwestern Taiwan. J Toxicol Environ Health A. 2005;68(5):319–27.

Zheng LY, Umans JG, Yeh F, Francesconi KA, Goessler W, Silbergeld EK, et al. The association of urine arsenic with prevalent and incident chronic kidney disease: evidence from the strong heart study. Epidemiology. 2015;26(4):601–12.

Wang PX, Li HT, Zhang L, Liu JM. The clinical profile and prognosis of Chinese children with melamine-induced kidney disease: a systematic review and meta-analysis. Biomed Res Int. 2013;2013:868202.

O’Brien KL, Selanikio JD, Hecdivert C, Placide MF, Louis M, Barr DB, et al. Epidemic of pediatric deaths from acute renal failure caused by diethylene glycol poisoning. Acute Renal Failure Investigation Team. JAMA. 1998;279(15):1175–80.

Gupta M, Singh N, Verma S. South Asians and cardiovascular risk: what clinicians should know. Circulation. 2006;113(25):e924–9.

Rajapurkar MM, John GT, Kirpalani AL, Abraham G, Agarwal SK, Almeida AF, et al. What do we know about chronic kidney disease in India: first report of the Indian CKD registry. BMC Nephrol. 2012;13:10.

Peraza S, Wesseling C, Aragon A, Leiva R, Garcia-Trabanino RA, Torres C, et al. Decreased kidney function among agricultural workers in El Salvador. Am J Kidney Dis. 2012;59(4):531–40.

Paula Santos U, Zanetta DM, Terra-Filho M, Burdmann EA. Burnt sugarcane harvesting is associated with acute renal dysfunction. Kidney Int. 2015;87(4):792–9.

Roncal Jimenez CA, Ishimoto T, Lanaspa MA, Rivard CJ, Nakagawa T, Ejaz AA, et al. Fructokinase activity mediates dehydration-induced renal injury. Kidney Int. 2014;86(2):294–302.

Johnson RJ, Glaser J, Sanchez-Lozada LG. Chronic kidney disease of unknown etiology: a disease related to global warming? MEDICC Rev. 2014;16(2):79–80.

Benavides FG, Wesseling C, Delclos GL, Felknor S, Pinilla J, Rodrigo F. Working conditions and health in Central America: a survey of 12,024 workers in six countries. Occup Environ Med. 2014;71(7):459–65.

VanDervort DR, Lopez DL, Orantes CM, Rodriguez DS. Spatial distribution of unspecified chronic kidney disease in El Salvador by crop area cultivated and ambient temperature. MEDICC Rev. 2014;16(2):31–8.

Cohen J. Mesoamerica’s mystery killer. Science. 2014;344(6180):143–7.

Reddy DV, Gunasekar A. Chronic kidney disease in two coastal districts of Andhra Pradesh, India: role of drinking water. Environ Geochem Health. 2013;35(4):439–54.

El Minshawy O. End-stage renal disease in the El-Minia Governorate, upper Egypt: an epidemiological study. Saudi J Kidney Dis Transpl. 2011;22(5):1048–54.

Kamel E, El-Minshawy O. Environmental Factors Incriminated in the Development of End Stage Renal Disease in El-Minia Governorate, Upper Egypt. Int J Nephrol Urol. 2010;2(3):431–7.

Torres C, Aragon A, Gonzalez M, Lopez I, Jakobsson K, Elinder CG, et al. Decreased Kidney Function of Unknown Cause in Nicaragua: A Community-Based Survey. Am J Kidney Dis. 2010;55(3):485–96.

Lopez-Marin L, Chavez Y, Garcia XA, Flores WM, Garcia YM, Herrera R, et al. Histopathology of chronic kidney disease of unknown etiology in Salvadoran agricultural communities. MEDICC Rev. 2014;16(2):49–54.

Nanayakkara S, Senevirathna ST, Karunaratne U, Chandrajith R, Harada KH, Hitomi T, et al. Evidence of tubular damage in the very early stage of chronic kidney disease of uncertain etiology in the North Central Province of Sri Lanka: a cross-sectional study. Environ Health Prev Med. 2012;17(2):109–17.

Visualizing renal failure and chronic kidney diseases age-standardized mortality rate in countries of the Americas, 2000–2009 [ http://ais.paho.org/phip/viz/nmh_renalfailure_ckd_visualization.asp ]