Global classical solutions of the Boltzmann equation without angular cut-off
Tóm tắt
This work proves the global stability of the Boltzmann equation (1872) with the physical collision kernels derived by Maxwell in 1866 for the full range of inverse-power intermolecular potentials,
Từ khóa
Tài liệu tham khảo
Alexandre, Radjesvarane, 1999, Une définition des solutions renormalisées pour l’équation de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris S\'{e}r. I Math., 328, 987, 10.1016/S0764-4442(99)80311-5
Alexandre, Radjesvarane, 2000, Around 3D Boltzmann non linear operator without angular cutoff, a new formulation, M2AN Math. Model. Numer. Anal., 34, 575, 10.1051/m2an:2000157
Alexandre, Radjesvarane, 2001, Some solutions of the Boltzmann equation without angular cutoff, J. Statist. Phys., 104, 327, 10.1023/A:1010317913642
Alexandre, Radjesvarane, 2005, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules, Math. Models Methods Appl. Sci., 15, 907, 10.1142/S0218202505000613
Alexandre, Radjesvarane, 2006, Integral estimates for a linear singular operator linked with the Boltzmann operator. I. Small singularities 0<𝜈<1, Indiana Univ. Math. J., 55, 1975, 10.1512/iumj.2006.55.2861
Alexandre, Radjesvarane, 2009, A review of Boltzmann equation with singular kernels, Kinet. Relat. Models, 2, 551, 10.3934/krm.2009.2.551
Alexandre, R., 2000, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152, 327, 10.1007/s002050000083
Alexandre, R., 2002, On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math., 55, 30, 10.1002/cpa.10012
Alexandre, R., 2008, Uncertainty principle and kinetic equations, J. Funct. Anal., 255, 2013, 10.1016/j.jfa.2008.07.004
Alexandre, Radjesvarane, 2010, Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198, 39, 10.1007/s00205-010-0290-1
Alexandre, Radjesvarane, Dec. 27, 2009, Global existence and full regularity of the Boltzmann equation without angular cutoff, preprint
Alexandre, Radjesvarane, May 28, 2010, The Boltzmann equation without angular cutoff in the whole space: I. An essential coercivity estimate, preprint
Alexandre, Radjesvarane, July 2, 2010, Boltzmann equation without angular cutoff in the whole space: II. Global existence for soft potential, preprint
Alonso, Ricardo J., 2009, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137, 1147, 10.1007/s10955-009-9873-3
Alonso, Ricardo J., 2010, Convolution inequalities for the Boltzmann collision operator, Comm. Math. Phys., 298, 293, 10.1007/s00220-010-1065-0
Arkeryd, Leif, 1981, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal., 77, 11, 10.1007/BF00280403
Arkeryd, Leif, 1982, Asymptotic behaviour of the Boltzmann equation with infinite range forces, Comm. Math. Phys., 86, 475, 10.1007/BF01214883
Bernis, Laurent, 2009, Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation, Discrete Contin. Dyn. Syst., 24, 13, 10.3934/dcds.2009.24.13
Bobylëv, A. V., 1988, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, 111
Boudin, Laurent, 2000, On the singularities of the global small solutions of the full Boltzmann equation, Monatsh. Math., 131, 91, 10.1007/s006050070015
Carleman, Torsten, 1933, Sur la théorie de l’équation intégrodifférentielle de Boltzmann, Acta Math., 60, 91, 10.1007/BF02398270
Chen, Yemin, 2009, Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech. Anal., 193, 21, 10.1007/s00205-009-0223-z
Chen, Yemin, July 22, 2010, Smoothing effect for Boltzmann equation with full-range interactions; Part I and Part II, arXiv preprint
Desvillettes, Laurent, 1995, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168, 417, 10.1007/BF02101556
Desvillettes, Laurent, 1996, Regularization for the non-cutoff 2D radially symmetric Boltzmann equation with a velocity dependent cross section, Transport Theory Statist. Phys., 25, 383, 10.1080/00411459608220708
Desvillettes, Laurent, 1997, Regularization properties of the 2-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Transport Theory Statist. Phys., 26, 341, 10.1080/00411459708020291
Desvillettes, Laurent, 2003, About the use of the Fourier transform for the Boltzmann equation, Riv. Mat. Univ. Parma (7), 2*, 1
Desvillettes, L., 2000, On a model Boltzmann equation without angular cutoff, Differential Integral Equations, 13, 567, 10.57262/die/1356061239
Desvillettes, Laurent, 2009, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Ration. Mech. Anal., 193, 227, 10.1007/s00205-009-0233-x
Desvillettes, Laurent, 2004, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Partial Differential Equations, 29, 133, 10.1081/PDE-120028847
Desvillettes, Laurent, 2000, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25, 179, 10.1080/03605300008821512
Desvillettes, L., 2005, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159, 245, 10.1007/s00222-004-0389-9
DiPerna, R. J., 1989, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2), 130, 321, 10.2307/1971423
Duan, Renjun, 2008, On the Cauchy problem for the Boltzmann equation in the whole space: global existence and uniform stability in 𝐿²_{𝜉}(𝐻^{𝑁}ₓ), J. Differential Equations, 244, 3204, 10.1016/j.jde.2007.11.006
Duan, Renjun, 2008, Propagation of singularities in the solutions to the Boltzmann equation near equilibrium, Math. Models Methods Appl. Sci., 18, 1093, 10.1142/S0218202508002966
Duan, Renjun, 2011, Optimal Time Decay of the Vlasov-Poisson-Boltzmann System in ℝ³, Arch. Rational Mech. Anal., 199, 291, 10.1007/s00205-010-0318-6
Duan, Renjun, 2010, Optimal Large-Time Behavior of the Vlasov-Maxwell-Boltzmann System in the Whole Space, preprint
Fournier, Nicolas, 2008, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys., 131, 749, 10.1007/s10955-008-9511-5
Fefferman, Charles L., 1983, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.), 9, 129, 10.1090/S0273-0979-1983-15154-6
Gamba, I. M., 2009, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194, 253, 10.1007/s00205-009-0250-9
Goudon, T., 1997, On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions, J. Statist. Phys., 89, 751, 10.1007/BF02765543
Grad, Harold, 1963, Asymptotic theory of the Boltzmann equation. II, 26
Gressman, Philip T., Dec. 4, 2009, Global Strong Solutions of the Boltzmann Equation without Angular Cut-off, 55
Gressman, Philip T., 2010, Global classical solutions of the Boltzmann equation with long-range interactions, Proc. Natl. Acad. Sci. USA, 107, 5744, 10.1073/pnas.1001185107
Gressman, Philip T., Feb. 15, 2010, Global Classical Solutions of the Boltzmann Equation with Long-Range Interactions and Soft-Potentials, 51
Gressman, Philip T., July 8, 2010, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, submitted, 29
Guo, Yan, 2002, The Landau equation in a periodic box, Comm. Math. Phys., 231, 391, 10.1007/s00220-002-0729-9
Guo, Yan, 2003, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal., 169, 305, 10.1007/s00205-003-0262-9
Guo, Yan, 2003, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153, 593, 10.1007/s00222-003-0301-z
Guo, Yan, 2004, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53, 1081, 10.1512/iumj.2004.53.2574
Illner, Reinhard, 1984, The Boltzmann equation: global existence for a rare gas in an infinite vacuum, Comm. Math. Phys., 95, 217, 10.1007/BF01468142
Kaniel, Shmuel, 1978, The Boltzmann equation. I. Uniqueness and local existence, Comm. Math. Phys., 58, 65
Kawashima, Shuichi, 1990, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7, 301, 10.1007/BF03167846
Jang, Juhi, 2009, Vlasov-Maxwell-Boltzmann diffusive limit, Arch. Ration. Mech. Anal., 194, 531, 10.1007/s00205-008-0169-6
Klainerman, S., 2006, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal., 16, 126, 10.1007/s00039-006-0551-1
Lions, P.-L., 1994, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser. A, 346, 191, 10.1098/rsta.1994.0018
Lions, P.-L., 1994, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., 34, 391, 10.1215/kjm/1250519017
Lions, Pierre-Louis, 1998, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris S\'{e}r. I Math., 326, 37, 10.1016/S0764-4442(97)82709-7
Liu, Tai-Ping, 2004, Energy method for Boltzmann equation, Phys. D, 188, 178, 10.1016/j.physd.2003.07.011
Maxwell, J. Clerk, 1867, On the Dynamical Theory of Gases, Philosophical Transactions of the Royal Society of London, 157, 49, 10.1098/rstl.1867.0004
Morgenstern, Dietrich, 1954, General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules, Proc. Nat. Acad. Sci. U.S.A., 40, 719, 10.1073/pnas.40.8.719
Morimoto, Yoshinori, 2009, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst., 24, 187, 10.3934/dcds.2009.24.187
Mouhot, Clément, 2006, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31, 1321, 10.1080/03605300600635004
Mouhot, Clément, 2007, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9), 87, 515, 10.1016/j.matpur.2007.03.003
Pao, Young Ping, 1974, Boltzmann collision operator with inverse-power intermolecular potentials. I, II, Comm. Pure Appl. Math., 27, 407, 10.1002/cpa.3160270402
Stein, Elias M., 1970, Singular integrals and differentiability properties of functions
Stein, Elias M., 1970, Topics in harmonic analysis related to the Littlewood-Paley theory.
Strain, Robert M., 2006, The Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Math. Phys., 268, 543, 10.1007/s00220-006-0109-y
Strain, Robert M., 2010, Optimal time decay of the non cut-off Boltzmann equation in the whole space, preprint
Strain, Robert M., 2006, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31, 417, 10.1080/03605300500361545
Strain, Robert M., 2008, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187, 287, 10.1007/s00205-007-0067-3
Ukai, Seiji, 1974, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50, 179
Ukai, Seiji, 1984, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., 1, 141, 10.1007/BF03167864
Villani, Cédric, 1998, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143, 273, 10.1007/s002050050106
Villani, Cédric, 1999, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana, 15, 335, 10.4171/RMI/259
Villani, Cédric, 2002, A review of mathematical topics in collisional kinetic theory, 71, 10.1016/S1874-5792(02)80004-0
Villani, Cédric, 2009, Hypocoercivity, Mem. Amer. Math. Soc., iv+141
Wang Chang, C. S., 1952, On the Propagation of Sound in Monatomic Gases, 1