Global classical solutions of the Boltzmann equation without angular cut-off

Journal of the American Mathematical Society - Tập 24 Số 3 - Trang 771-847
Philip T. Gressman1, Robert M. Strain1
1Department of Mathematics, University of Pennsylvania, David Rittenhouse Laboratory, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6395

Tóm tắt

This work proves the global stability of the Boltzmann equation (1872) with the physical collision kernels derived by Maxwell in 1866 for the full range of inverse-power intermolecular potentials,r(p1)r^{-(p-1)}withp>2p>2, for initial perturbations of the Maxwellian equilibrium states, as announced in an earlier paper by the authors. We more generally cover collision kernels with parameterss(0,1)s\in (0,1)andγ\gammasatisfyingγ>n\gamma > -nin arbitrary dimensionsTn×Rn\mathbb {T}^n \times \mathbb {R}^nwithn2n\ge 2. Moreover, we prove rapid convergence as predicted by the celebrated BoltzmannHH-theorem. Whenγ2s\gamma \ge -2s, we have exponential time decay to the Maxwellian equilibrium states. Whenγ>2s\gamma >-2s, our solutions decay polynomially fast in time with any rate. These results are completely constructive. Additionally, we prove sharp constructive upper and lower bounds for the linearized collision operator in terms of a geometric fractional Sobolev norm; we thus observe that a spectral gap exists only whenγ2s\gamma \ge -2s, as conjectured by Mouhot and Strain. It will be observed that this fundamental equation, derived by both Boltzmann and Maxwell, grants a basic example where a range of geometric fractional derivatives occur in a physical model of the natural world. Our methods provide a new understanding of the grazing collisions in the Boltzmann theory.

Từ khóa


Tài liệu tham khảo

Alexandre, Radjesvarane, 1999, Une définition des solutions renormalisées pour l’équation de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris S\'{e}r. I Math., 328, 987, 10.1016/S0764-4442(99)80311-5

Alexandre, Radjesvarane, 2000, Around 3D Boltzmann non linear operator without angular cutoff, a new formulation, M2AN Math. Model. Numer. Anal., 34, 575, 10.1051/m2an:2000157

Alexandre, Radjesvarane, 2001, Some solutions of the Boltzmann equation without angular cutoff, J. Statist. Phys., 104, 327, 10.1023/A:1010317913642

Alexandre, Radjesvarane, 2005, Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules, Math. Models Methods Appl. Sci., 15, 907, 10.1142/S0218202505000613

Alexandre, Radjesvarane, 2006, Integral estimates for a linear singular operator linked with the Boltzmann operator. I. Small singularities 0<𝜈<1, Indiana Univ. Math. J., 55, 1975, 10.1512/iumj.2006.55.2861

Alexandre, Radjesvarane, 2009, A review of Boltzmann equation with singular kernels, Kinet. Relat. Models, 2, 551, 10.3934/krm.2009.2.551

Alexandre, R., 2000, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152, 327, 10.1007/s002050000083

Alexandre, R., 2002, On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math., 55, 30, 10.1002/cpa.10012

Alexandre, R., 2008, Uncertainty principle and kinetic equations, J. Funct. Anal., 255, 2013, 10.1016/j.jfa.2008.07.004

Alexandre, Radjesvarane, 2010, Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198, 39, 10.1007/s00205-010-0290-1

Alexandre, Radjesvarane, Dec. 27, 2009, Global existence and full regularity of the Boltzmann equation without angular cutoff, preprint

Alexandre, Radjesvarane, May 28, 2010, The Boltzmann equation without angular cutoff in the whole space: I. An essential coercivity estimate, preprint

Alexandre, Radjesvarane, July 2, 2010, Boltzmann equation without angular cutoff in the whole space: II. Global existence for soft potential, preprint

Alonso, Ricardo J., 2009, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137, 1147, 10.1007/s10955-009-9873-3

Alonso, Ricardo J., 2010, Convolution inequalities for the Boltzmann collision operator, Comm. Math. Phys., 298, 293, 10.1007/s00220-010-1065-0

Arkeryd, Leif, 1981, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal., 77, 11, 10.1007/BF00280403

Arkeryd, Leif, 1982, Asymptotic behaviour of the Boltzmann equation with infinite range forces, Comm. Math. Phys., 86, 475, 10.1007/BF01214883

Bernis, Laurent, 2009, Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation, Discrete Contin. Dyn. Syst., 24, 13, 10.3934/dcds.2009.24.13

Bobylëv, A. V., 1988, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, 111

Boltzmann, Ludwig, 1964, Lectures on gas theory, 10.1525/9780520327474

Boudin, Laurent, 2000, On the singularities of the global small solutions of the full Boltzmann equation, Monatsh. Math., 131, 91, 10.1007/s006050070015

Carleman, Torsten, 1933, Sur la théorie de l’équation intégrodifférentielle de Boltzmann, Acta Math., 60, 91, 10.1007/BF02398270

Cercignani, Carlo, 1988, The Boltzmann equation and its applications, 67, 10.1007/978-1-4612-1039-9

Cercignani, Carlo, 1994, The mathematical theory of dilute gases, 106, 10.1007/978-1-4419-8524-8

Chen, Yemin, 2009, Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech. Anal., 193, 21, 10.1007/s00205-009-0223-z

Chen, Yemin, July 22, 2010, Smoothing effect for Boltzmann equation with full-range interactions; Part I and Part II, arXiv preprint

Desvillettes, Laurent, 1995, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168, 417, 10.1007/BF02101556

Desvillettes, Laurent, 1996, Regularization for the non-cutoff 2D radially symmetric Boltzmann equation with a velocity dependent cross section, Transport Theory Statist. Phys., 25, 383, 10.1080/00411459608220708

Desvillettes, Laurent, 1997, Regularization properties of the 2-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Transport Theory Statist. Phys., 26, 341, 10.1080/00411459708020291

Desvillettes, Laurent, 2003, About the use of the Fourier transform for the Boltzmann equation, Riv. Mat. Univ. Parma (7), 2*, 1

Desvillettes, L., 2000, On a model Boltzmann equation without angular cutoff, Differential Integral Equations, 13, 567, 10.57262/die/1356061239

Desvillettes, Laurent, 2009, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Ration. Mech. Anal., 193, 227, 10.1007/s00205-009-0233-x

Desvillettes, Laurent, 2004, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Partial Differential Equations, 29, 133, 10.1081/PDE-120028847

Desvillettes, Laurent, 2000, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25, 179, 10.1080/03605300008821512

Desvillettes, L., 2005, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159, 245, 10.1007/s00222-004-0389-9

DiPerna, R. J., 1989, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2), 130, 321, 10.2307/1971423

Duan, Renjun, 2008, On the Cauchy problem for the Boltzmann equation in the whole space: global existence and uniform stability in 𝐿²_{𝜉}(𝐻^{𝑁}ₓ), J. Differential Equations, 244, 3204, 10.1016/j.jde.2007.11.006

Duan, Renjun, 2008, Propagation of singularities in the solutions to the Boltzmann equation near equilibrium, Math. Models Methods Appl. Sci., 18, 1093, 10.1142/S0218202508002966

Duan, Renjun, 2011, Optimal Time Decay of the Vlasov-Poisson-Boltzmann System in ℝ³, Arch. Rational Mech. Anal., 199, 291, 10.1007/s00205-010-0318-6

Duan, Renjun, 2010, Optimal Large-Time Behavior of the Vlasov-Maxwell-Boltzmann System in the Whole Space, preprint

Fournier, Nicolas, 2008, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys., 131, 749, 10.1007/s10955-008-9511-5

Fefferman, Charles L., 1983, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.), 9, 129, 10.1090/S0273-0979-1983-15154-6

Gamba, I. M., 2009, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194, 253, 10.1007/s00205-009-0250-9

Glassey, Robert T., 1996, The Cauchy problem in kinetic theory, 10.1137/1.9781611971477

Goudon, T., 1997, On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions, J. Statist. Phys., 89, 751, 10.1007/BF02765543

Grad, Harold, 1963, Asymptotic theory of the Boltzmann equation. II, 26

Gressman, Philip T., Dec. 4, 2009, Global Strong Solutions of the Boltzmann Equation without Angular Cut-off, 55

Gressman, Philip T., 2010, Global classical solutions of the Boltzmann equation with long-range interactions, Proc. Natl. Acad. Sci. USA, 107, 5744, 10.1073/pnas.1001185107

Gressman, Philip T., Feb. 15, 2010, Global Classical Solutions of the Boltzmann Equation with Long-Range Interactions and Soft-Potentials, 51

Gressman, Philip T., July 8, 2010, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, submitted, 29

Guo, Yan, 2002, The Landau equation in a periodic box, Comm. Math. Phys., 231, 391, 10.1007/s00220-002-0729-9

Guo, Yan, 2003, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal., 169, 305, 10.1007/s00205-003-0262-9

Guo, Yan, 2003, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153, 593, 10.1007/s00222-003-0301-z

Guo, Yan, 2004, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53, 1081, 10.1512/iumj.2004.53.2574

Illner, Reinhard, 1984, The Boltzmann equation: global existence for a rare gas in an infinite vacuum, Comm. Math. Phys., 95, 217, 10.1007/BF01468142

Kaniel, Shmuel, 1978, The Boltzmann equation. I. Uniqueness and local existence, Comm. Math. Phys., 58, 65

Kawashima, Shuichi, 1990, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7, 301, 10.1007/BF03167846

Jang, Juhi, 2009, Vlasov-Maxwell-Boltzmann diffusive limit, Arch. Ration. Mech. Anal., 194, 531, 10.1007/s00205-008-0169-6

Klainerman, S., 2006, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal., 16, 126, 10.1007/s00039-006-0551-1

Lions, P.-L., 1994, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser. A, 346, 191, 10.1098/rsta.1994.0018

Lions, P.-L., 1994, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., 34, 391, 10.1215/kjm/1250519017

Lions, Pierre-Louis, 1998, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris S\'{e}r. I Math., 326, 37, 10.1016/S0764-4442(97)82709-7

Liu, Tai-Ping, 2004, Energy method for Boltzmann equation, Phys. D, 188, 178, 10.1016/j.physd.2003.07.011

Maxwell, J. Clerk, 1867, On the Dynamical Theory of Gases, Philosophical Transactions of the Royal Society of London, 157, 49, 10.1098/rstl.1867.0004

Morgenstern, Dietrich, 1954, General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules, Proc. Nat. Acad. Sci. U.S.A., 40, 719, 10.1073/pnas.40.8.719

Morimoto, Yoshinori, 2009, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst., 24, 187, 10.3934/dcds.2009.24.187

Mouhot, Clément, 2006, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31, 1321, 10.1080/03605300600635004

Mouhot, Clément, 2007, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9), 87, 515, 10.1016/j.matpur.2007.03.003

Muscalu, Camil, 2006, Multi-parameter paraproducts, Rev. Mat. Iberoam., 22, 963, 10.4171/RMI/480

Pao, Young Ping, 1974, Boltzmann collision operator with inverse-power intermolecular potentials. I, II, Comm. Pure Appl. Math., 27, 407, 10.1002/cpa.3160270402

Stein, Elias M., 1970, Singular integrals and differentiability properties of functions

Stein, Elias M., 1970, Topics in harmonic analysis related to the Littlewood-Paley theory.

Strain, Robert M., 2006, The Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Math. Phys., 268, 543, 10.1007/s00220-006-0109-y

Strain, Robert M., 2010, Optimal time decay of the non cut-off Boltzmann equation in the whole space, preprint

Strain, Robert M., 2006, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31, 417, 10.1080/03605300500361545

Strain, Robert M., 2008, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187, 287, 10.1007/s00205-007-0067-3

Ukai, Seiji, 1974, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50, 179

Ukai, Seiji, 1984, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., 1, 141, 10.1007/BF03167864

Ukai, Seiji, 1986, Solutions of the Boltzmann equation, 37, 10.1016/S0168-2024(08)70128-0

Villani, Cédric, 1998, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143, 273, 10.1007/s002050050106

Villani, Cédric, 1999, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana, 15, 335, 10.4171/RMI/259

Villani, Cédric, 2002, A review of mathematical topics in collisional kinetic theory, 71, 10.1016/S1874-5792(02)80004-0

Villani, Cédric, 2009, Hypocoercivity, Mem. Amer. Math. Soc., iv+141

Wang Chang, C. S., 1952, On the Propagation of Sound in Monatomic Gases, 1