Global attractivity in nonautonomous logistic equations with delay

Nonlinear Analysis: Real World Applications - Tập 9 - Trang 53-63 - 2008
Benedetta Lisena1
1Dipartimento di Matematica, Universitá degli studi di Bari, via Orabona 4, 70125 Bari, Italy

Tài liệu tham khảo

Cermak, 2005, On the related asymptotic of delay differential and difference equations, Dynam. Syst. Appl., 14, 419 Chen, 2004, Periodicity in a logistic type system with several delays, Comput. Math. Appl., 48, 35, 10.1016/j.camwa.2004.02.001 Chen, 2006, Permanence and global attractivity of a delayed periodic logistic equation, Appl. Math. Comput., 177, 118, 10.1016/j.amc.2005.10.040 Chen, 2003, Periodic solutions of a delayed periodic logistic equation, Appl. Math. Lett., 16, 1047, 10.1016/S0893-9659(03)90093-0 Freedman, 1992, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23, 689, 10.1137/0523035 Gopalsamy, 1992 Kuang, 1993 Ladde, 1987 Lenhart, 1986, Global stability of a biological model with time delay, Proc. Amer. Math. Soc., 96, 75, 10.1090/S0002-9939-1986-0813814-3 Li, 2001, Periodic solutions of periodic delay Lotka–Volerra equations and systems, J. Math. Anal. Appl., 255, 260, 10.1006/jmaa.2000.7248 Wang, 2004, Asymptotic behavior of solutions of delay logistic differential equation with negative instantaneously terms, Appl. Math. Comput., 153, 69, 10.1016/S0096-3003(03)00609-X