Global and regional cardiac dysfunction quantified by 18F-FDG PET scans can predict ventricular arrhythmia in patients with implantable cardioverter defibrillator

Journal of Nuclear Cardiology - Tập 28 - Trang 464-477 - 2021
Ran Jing1, Xiao-Xin Sun2, Wei Hua1, Liang Chen1, Sheng-Wen Yang1, Yi-Ran Hu1, Ni-Xiao Zhang1, Min-Si Cai1, Min Gu1, Hong-Xia Niu1, Shu Zhang1
1State Key Laboratory of Cardiovascular Disease, The Cardiac Arrhythmia Center, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
2Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China

Tóm tắt

A low appropriate therapy rate indicates that a minority of patients will benefit from their implantable cardioverter defibrillator (ICD). Quantitative measurements from 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) may predict ventricular arrhythmia (VA) occurrence after ICD placement. We performed a prospective observational study and recruited patients who required ICD placement. Pre-procedure image scans were performed. Patients were followed up for VA occurrence. Associations between image results and VA were analyzed. In 51 patients (33 males, 53.9 ± 17.2 years) analyzed, 17 (33.3%) developed VA. Compared with patients without VA, patients with VA had significantly larger values in scar area (17.7 ± 12.4% vs. 7.0 ± 7.9%), phase standard deviation (51.4° ± 14.0° vs. 34.0° ± 15.0°), bandwidth (172.9° ± 39.8° vs. 128.7° ± 49.9°), sum thickening score (STS, 29.5 ± 11.1 vs. 17.8 ± 13.2), and sum motion score (42.9 ± 11.5 vs. 33.0 ± 19.0). Cox regression analysis and receiver operating characteristic curve analysis showed that scar size, dyssynchrony, and STS were associated with VA occurrence (HR, 4.956, 95% CI 1.70-14.46). Larger left ventricular scar burden, increased dyssynchrony, and higher STS quantified by 18F-FDG PET may indicate a higher VA incidence after ICD placement.

Tài liệu tham khảo

Antiarrhythmics versus Implantable Defibrillators I. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 1997;337:1576-83. Bokhari F, Newman D, Greene M, Korley V, Mangat I, Dorian P. Long-term comparison of the implantable cardioverter defibrillator versus amiodarone: Eleven-year follow-up of a subset of patients in the Canadian Implantable Defibrillator Study (CIDS). Circulation 2004;110:112-6. Singh JP, Hall WJ, McNitt S, Wang H, Daubert JP, Zareba W, et al. Factors influencing appropriate firing of the implanted defibrillator for ventricular tachycardia/fibrillation: Findings from the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II). J Am Coll Cardiol 2005;46:1712-20. Weeke P, Johansen JB, Jorgensen OD, Nielsen JC, Moller M, Videbaek R, et al. Mortality and appropriate and inappropriate therapy in patients with ischaemic heart disease and implanted cardioverter-defibrillators for primary prevention: Data from the Danish ICD Register. Europace 2013;15:1150-7. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 2018;72:1677-749. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23:1187-226. Cerqueira, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42. Sun XX, Li S, Fang W, Tian YQ, Shen R, Wei H, et al. Preserved myocardial viability in patients with chronic total occlusion of a single coronary artery. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02134-z. Chen X, Li L, Cheng H, Song Y, Ji K, Chen L, et al. Early left ventricular involvement detected by cardiovascular magnetic resonance feature tracking in arrhythmogenic right ventricular cardiomyopathy: The effects of left ventricular late gadolinium enhancement and right ventricular dysfunction. J Am Heart Assoc 2019;8:e012989. Russo AM, Stainback RF, Bailey SR, Epstein AE, Heidenreich PA, Jessup M, et al. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: A report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 2013;61:1318-68. Katritsis DG, Zareba W, Camm AJ. Nonsustained ventricular tachycardia. J Am Coll Cardiol 2012;60:1993-2004. Malhotra S, Canty JM Jr. Structural and physiological imaging to predict the risk of lethal ventricular arrhythmias and sudden death. JACC Cardiovasc Imaging 2019;12:2049-64. Haugaa KH, Grenne BL, Eek CH, Ersboll M, Valeur N, Svendsen JH, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 2013;6:841-50. Kutyifa V, Pouleur AC, Knappe D, Al-Ahmad A, Gibinski M, Wang PJ, et al. Dyssynchrony and the risk of ventricular arrhythmias. JACC Cardiovasc Imaging 2013;6:432-44. Disertori M, Rigoni M, Pace N, Casolo G, Mase M, Gonzini L, et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: A meta-analysis. JACC Cardiovasc Imaging 2016;9:1046-55. Pedretti S, Vargiu S, Baroni M, Dellegrottaglie S, Lanzarin B, Roghi A, et al. Complexity of scar and ventricular arrhythmias in dilated cardiomyopathy of any etiology: Long-term data from the SCARFEAR (Cardiovascular Magnetic Resonance Predictors of Appropriate Implantable Cardioverter-Defibrillator Therapy Delivery) Registry. Clin Cardiol 2018;41:494-501. Cho GY, Kim HK, Kim YJ, Choi DJ, Sohn DW, Oh BH, et al. Electrical and mechanical dyssynchrony for prediction of cardiac events in patients with systolic heart failure. Heart 2010;96:1029-32. Chiang KF, Hung GU, Tsai SC, Cheng CM, Chang YC, Lin WY, et al. Impact of cardiac reverse remodeling after cardiac resynchronization therapy assessed by myocardial perfusion imaging on ventricular arrhythmia. J Nucl Cardiol 2017;24:1282-8. Malhotra S, Pasupula DK, Sharma RK, Saba S, Soman P. Relationship between left ventricular dyssynchrony and scar burden in the genesis of ventricular tachyarrhythmia. J Nucl Cardiol 2018;25:555-69. Schaefer WM, Lipke CS, Nowak B, Kaiser HJ, Reinartz P, Buecker A, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: Comparison with cardiac MRI. J Nucl Med. 2004;45:74-9. Pazhenkottil AP, Buechel RR, Nkoulou R, Ghadri JR, Herzog BA, Husmann L, et al. Left ventricular dyssynchrony assessment by phase analysis from gated PET-FDG scans. J Nucl Cardiol 2011;18:920-5. Wang L, Wei HX, Yang MF, Guo J, Wang JF, Fang W, et al. Phase analysis by gated F-18 FDG PET/CT for left ventricular dyssynchrony assessment: A comparison with gated Tc-99 m sestamibi SPECT. Ann Nucl Med 2013;27:325-34. Rijnierse MT, Allaart CP, Knaapen P. Principles and techniques of imaging in identifying the substrate of ventricular arrhythmia. J Nucl Cardiol 2016;23:218-34. Chiang KF, Cheng CM, Tsai SC, Lin WY, Chang YC, Huang JL, et al. Relationship of myocardial substrate characteristics as assessed by myocardial perfusion imaging and cardiac reverse remodeling levels after cardiac resynchronization therapy. Ann Nucl Med. 2016;30:484-93. Gupta A, Harrington M, Albert CM, Bajaj NS, Hainer J, Morgan V, et al. Myocardial scar but not ischemia is associated with defibrillator shocks and sudden cardiac death in stable patients with reduced left ventricular ejection fraction. JACC Clin Electrophysiol. 2018;4:1200-10. Piccini JP, Horton JR, Shaw LK, Al-Khatib SM, Lee KL, Iskandrian AE, et al. Single-photon emission computed tomography myocardial perfusion defects are associated with an increased risk of all-cause death, cardiovascular death, and sudden cardiac death. Circ Cardiovasc Imaging 2008;1:180-8. Hussein AA, Niekoop M, Dilsizian V, Ghzally Y, Abdulghani M, Asoglu R, et al. Hibernating substrate of ventricular tachycardia: A three-dimensional metabolic and electro-anatomic assessment. J Interv Card Electrophysiol. 2017;48:247-54. Saab G, Dekemp RA, Ukkonen H, Ruddy TD, Germano G, Beanlands RS. Gated fluorine 18 fluorodeoxyglucose positron emission tomography: Determination of global and regional left ventricular function and myocardial tissue characterization. J Nucl Cardiol 2003;10:297-303. Zhang F, Wang J, Shao X, Yang M, Qian Y, Yang X, et al. Incremental value of myocardial wall motion and thickening to perfusion alone by gated SPECT myocardial perfusion imaging for viability assessment in patients with ischemic heart failure. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02040-4. Biton Y, Goldenberg I, Kutyifa V, Baman JR, Solomon S, Moss AJ, et al. Relative wall thickness and the risk for ventricular tachyarrhythmias in patients with left ventricular dysfunction. J Am Coll Cardiol 2016;67:303-12. Yang W, Zhang F, Tang H, Shao X, Wang J, Wang X, et al. Summed thickening score by myocardial perfusion imaging: A risk factor of left ventricular remodeling in patients with myocardial infarction. J Nucl Cardiol 2018;25:742-53. Miller RJH, Hu LH, Gransar H, Betancur J, Eisenberg E, Otaki Y, et al. Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: Analysis of the REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2020;21:567-75. Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 2014;63:141-9.