Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0

Progress in Earth and Planetary Science - Tập 7 - Trang 1-21 - 2020
Naga Oshima1, Seiji Yukimoto1, Makoto Deushi1, Tsuyoshi Koshiro1, Hideaki Kawai1, Taichu Y. Tanaka1, Kohei Yoshida1
1Meteorological Research Institute, Ibaraki, Japan

Tóm tắt

The effective radiative forcing (ERF) of anthropogenic gases and aerosols under present-day conditions relative to preindustrial conditions is estimated using the Meteorological Research Institute Earth System Model version 2.0 (MRI-ESM2.0) as part of the Radiative Forcing Model Intercomparison Project (RFMIP) and Aerosol and Chemistry Model Intercomparison Project (AerChemMIP), endorsed by the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The global mean total anthropogenic net ERF estimate at the top of the atmosphere is 1.96 W m−2 and is composed primarily of positive forcings due to carbon dioxide (1.85 W m−2), methane (0.71 W m−2), and halocarbons (0.30 W m−2) and negative forcing due to the total aerosols (− 1.22 W m−2). The total aerosol ERF consists of 23% from aerosol-radiation interactions (− 0.32 W m−2), 71% from aerosol-cloud interactions (− 0.98 W m−2), and slightly from surface albedo changes caused by aerosols (0.08 W m−2). The ERFs due to aerosol-radiation interactions consist of opposing contributions from light-absorbing black carbon (BC) (0.25 W m−2) and from light-scattering sulfate (− 0.48 W m−2) and organic aerosols (− 0.07 W m−2) and are pronounced over emission source regions. The ERFs due to aerosol-cloud interactions (ERFaci) are prominent over the source and downwind regions, caused by increases in the number concentrations of cloud condensation nuclei and cloud droplets in low-level clouds. Concurrently, increases in the number concentration of ice crystals in high-level clouds (temperatures < –38 °C), primarily induced by anthropogenic BC aerosols, particularly over tropical convective regions, cause both substantial negative shortwave and positive longwave ERFaci values in MRI-ESM2.0. These distinct forcings largely cancel each other; however, significant longwave radiative heating of the atmosphere caused by high-level ice clouds suggests the importance of further studies on the interactions of aerosols with ice clouds. Total anthropogenic net ERFs are almost entirely positive over the Arctic due to contributions from the surface albedo reductions caused by BC. In the Arctic, BC provides the second largest contribution to the positive ERFs after carbon dioxide, suggesting a possible important role of BC in Arctic surface warming.

Tài liệu tham khảo

Abdul-Razzak H, Ghan SJ (2000) A parameterization of aerosol activation: 2. Multiple aerosol types. J Geophys Res 105:6837. https://doi.org/10.1029/1999JD901161 Abdul-Razzak H, Ghan SJ, Rivera-Carpio C (1998) A parameterization of aerosol activation: 1. Single aerosol type. J Geophys Res 103:6123. https://doi.org/10.1029/97JD03735 AMAP (2015) AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway. vii + 116 pp. [Available at http://www.amap.no/documents/doc/AMAP-Assessment-2015-Black-carbon-andozone-as-Arctic-climate-forcers/1299.] Aoki T, Kuchiki K, Niwano M, Kodama Y, Hosaka M, Tanaka T (2011) Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J Geophys Res 116:D11114. https://doi.org/10.1029/2010JD015507 Bigg EK (1953) The supercooling of water. Proc Phys Soc B 66:688–694 Bond TC, Doherty J, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res-Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171 Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) . Cambridge University Press, Cambridge, United Kingdom and New York Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A, Forster PM, Mann GW, Spracklen DV, Woodhouse MT, Regayre LA, Pierce JR (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503:67–71. https://doi.org/10.1038/nature12674 Collins WJ, Lamarque J-F, Schulz M, Boucher O, Eyring V, Hegglin MI, Maycock A, Myhre G, Prather M, Shindell D, Smith SJ (2017) AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geosci Model Dev 10:85–607. https://doi.org/10.5194/gmd-10-585-2017 Cotton WR, Tripoli GJ, Rauber RM, Mulvihill EA (1986) Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J Clim Appl Meteorol 25:1658–1680. https://doi.org/10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2 DeMott PJ, Chen Y, Kreidenweis SM, Rogers DC, Sherman DE (1999) Ice formation by black carbon particles. Geophys Res Lett 26(16):2429–2432. https://doi.org/10.1029/1999GL900580 Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res 112:D11202. https://doi.org/10.1029/2006JD008003 Ghan SJ (2013) Technical Note: estimating aerosol effects on cloud radiative forcing. Atmos Chem Phys 13:9971–9974. https://doi.org/10.5194/acp-13-9971-2013 Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci U S A 101(2):423–428. https://doi.org/10.1073/pnas.2237157100 Jacobson MZ (2002) Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res 107(D19):4410. https://doi.org/10.1029/2001JD001376 Kaiho K, Oshima N (2017) Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction. Sci Rep 9:14855. https://doi.org/10.1038/s41598-017-14199-x Kaiho K, Oshima N, Adachi K, Adachi Y, Mizukami T, Fujibayashi M, Saito R (2016) Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction. Sci Rep 6:28427. https://doi.org/10.1038/srep28427 Kärcher B, Hendricks J, Lohmann U (2006) Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J Geophys Res 111:D01205. https://doi.org/10.1029/2005JD006219 Kärcher B, Lohmann U (2002) A parameterization of cirrus cloud formation: homogeneous freezing including effects of aerosol size. J Geophys Res 107:4698. https://doi.org/10.1029/2001JD001429 Kärcher B, Lohmann U (2003) A parameterization of cirrus cloud formation: Heterogeneous freezing. J Geophys Res 108:4402. https://doi.org/10.1029/2002JD003220 Kawai H, Yukimoto S, Koshiro T, Oshima N, Tanaka T, Yoshimura H, Nagasawa R (2019) Significant improvement of cloud representation in the global climate model MRI-ESM2. Geosci Model Dev 12:2875–2897. https://doi.org/10.5194/gmd-12-2875-2019 Levkov L, Rockel B, Kapitza H, Raschke E (1992) 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr Phys Atmos 65:35–58 Lohmann U (2002) Possible aerosol effects on ice clouds via contact nucleation. J Atmos Sci 59:647–656. https://doi.org/10.1175/1520-0469(2001)059<0647:PAEOIC>2.0.CO;2 Lohmann U, Diehl K (2006) Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J Atmos Sci 63:968–982. https://doi.org/10.1175/JAS3662.1 Lohmann U, Feichter J, Chuang CC, Penner JE (1999) Prediction of the number of cloud droplets in the ECHAM GCM. J Geophys Res 104:9169–9198. https://doi.org/10.1029/1999JD900046 Mahmood R, von Salzen K, Flanner M, Sand M, Langner J, Wang H, Huang L (2016) Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models. J Geophys Res-Atmos 121:7100–7116. https://doi.org/10.1002/2016JD024849 Mahrt F, Marcolli C, David RO, Grönquist P, Barthazy Meier EJ, Lohmann U, Kanji ZA (2018) Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber. Atmos Chem Phys 18:13363–13392. https://doi.org/10.5194/acp-18-13363-2018 Meyers MP, DeMott PJ, Cotton WR (1992) New primary ice-nucleation parameterizations in an explicit cloud model. J Appl Meteorol 31:708–721. https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2 Murakami M (1990) Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud – the 19 July 1981 CCOPE cloud. J Meteorol Soc Jpn 68:107–128. https://doi.org/10.2151/jmsj1965.68.2_107 Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) . Cambridge University Press, Cambridge, United Kingdom and New York Oshima N, Koike M (2013) Development of a parameterization of black carbon aging for use in general circulation models. Geosci Model Dev 6:263–282. https://doi.org/10.5194/gmd-6-263-2013 Oshima N, Koike M, Zhang Y, Kondo Y (2009a) Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. J Geophys Res 114:D18202. https://doi.org/10.1029/2008JD011681 Oshima N, Koike M, Zhang Y, Kondo Y, Moteki N, Takegawa N, Miyazaki Y (2009b) Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: model development and evaluation. J Geophys Res 114:D06210. https://doi.org/10.1029/2008JD010680 Oshima N, Kondo Y, Moteki N, Takegawa N, Koike M, Kita K, Matsui H, Kajino M, Nakamura H, Jung JS, Kim YJ (2012) Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign. J Geophys Res 117:D03204. https://doi.org/10.1029/2011JD016552 Penner JE, Zhou C, Garnier A, Mitchell DL (2018) Anthropogenic aerosol indirect effects in cirrus clouds. J Geophys Res Atmos 123:11,652–11,677. https://doi.org/10.1029/2018JD029204 Pincus R, Forster PM, Stevens B (2016) The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geosci Model Dev 9:3447–3460. https://doi.org/10.5194/gmd-9-3447-2016 Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) , Cambridge, United Kingdom and New York, p 881 Sand M, Berntsen T, von Salzen K, Flanner M, Langner J, Victor D (2015) Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nat Clim Chang. https://doi.org/10.1038/NCLIMATE2880 Sand M, Berntsen TK, Seland Ø, Kristjánsson JE (2013) Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes. J Geophys Res-Atmos 118:7788–7798. https://doi.org/10.1002/jgrd.50613 Smith CJ, Kramer RJ, Myhre G, Alterskjær K, Collins W, Sima A, Boucher O, Dufresne J-L, Nabat P, Michou M, Yukimoto S, Cole J, Paynter D, Shiogama H, O'Connor FM, Robertson E, Wiltshire A, Andrews T, Hannay C, Miller R, Nazarenko L, Kirkevåg A, Olivié D, Fiedler S, Pincus R, Forster PM (2020) Effective radiative forcing and adjustments in CMIP6 models. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2019-1212 in review Stohl A, Aamaas B, Amann M, Baker LH, Bellouin N, Berntsen TK, Boucher O, Cherian R, Collins W, Daskalakis N, Dusinska M, Eckhardt S, Fuglestvedt JS, Harju M, Heyes C, Hodnebrog Ø, Hao J, Im U, Kanakidou M, Klimont Z, Kupiainen K, Law KS, Lund MT, Maas R, MacIntosh CR, Myhre G, Myriokefalitakis S, Olivié D, Quaas J, Quennehen B et al (2015) Evaluating the climate and air quality impacts of short-lived pollutants. Atmos Chem Phys 15:10529–10566. https://doi.org/10.5194/acp-15-10529-2015 Suzuki K, Takemura T (2019) Perturbations to global energy budget due to absorbing and scattering aerosols. J Geophys Res-Atmos 124:194–2209. https://doi.org/10.1029/2018JD029808 Takemura T, Nozawa T, Emori S, Nakajima TY, Nakajima T (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J Geophys Res 110:D02202. https://doi.org/10.1029/2004JD005029 Takemura T, Suzuki K (2019) Weak global warming mitigation by reducing black carbon emissions. Sci Rep 9:4419. https://doi.org/10.1038/s41598-019-41181-6 Taylor KE, Crucifix M, Braconnot P, Hewitt CD, Doutriaux C, Broccoli AJ, Mitchell JFB, Webb MJ (2007) Estimating shortwave radiative forcing and response in climate models. J Clim 20(11):2530–2543. https://doi.org/10.1175/JCLI4143.1 Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1 Thornhill GD, Collins WJ, Kramer RJ, Olivié D, O'Connor F, Abraham NL, Bauer SE, Deushi M, Emmons L, Forster P, Horowitz L, Johnson B, Keeble J, Lamarque J-F, Michou M, Mills M, Mulcahy J, Myhre G, Nabat P, Naik V, Oshima N, Schulz M, Smith C, Takemura T, Tilmes S, Wu T, Zeng G, Zhang J (2020) Effective radiative forcing from emissions of reactive gases and aerosols – a multimodel comparison. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2019-1205 in review Vergara-Temprado J, Holden MA, Orton TR, O’Sullivan D, Umo NS, Browse J, Reddington C, Baeza-Romero MT, Jones JM, Lea-Langton A, Williams A, Carslaw KS, Murray BJ (2018) Is black carbon an unimportant ice-nucleating particle in mixed-phase clouds? J Geophys Res-Atmos 123:273–4283. https://doi.org/10.1002/2017JD027831 Yoshimura H, Yukimoto S (2008) Development of a simple coupler (Scup) for Earth system modeling. Pap Meteorol Geophys 59:19–29 Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3 –model description and basic performance. J Meteorol Soc Japan 90A:23–64. https://doi.org/10.2151/jmsj.2012-A02 Yukimoto S, Kawai H, Koshiro T, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yabu S, Yoshimura H, Shindo E, Mizuta R, Obata A, Adachi Y, Ishii M (2019) The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J Meteor Soc Japan 97:931–965. https://doi.org/10.2151/jmsj.2019-051 Zelinka MD, Andrews T, Forster PM, Taylor KE (2014) Quantifying components of aerosol-cloud-radiation interactions in climate models. J Geophys Res-Atmos 119:7599–7615. https://doi.org/10.1002/2014JD021710