Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier–Stokes Equations with Vacuum
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)
Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluid. J. Math. Pures Appl. 83, 243–275 (2004)
Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manuscr. Math. 120, 91–129 (2006)
Choe, H.J., Kim, H.: Strong solutions of the Navier–Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190, 504–523 (2003)
Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, New York (2004)
Feireisl, E., Novotny, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)
Hoff, D.: Global existence for 1D, compressible, isentropic Navier–Stokes equations with large initial data. Trans. Am. Math. Soc. 303(1), 169–181 (1987)
Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120(1), 215–254 (1995)
Hoff, D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal. 132, 1–14 (1995)
Hoff, D.: Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Commun. Pure Appl. Math. 55(11), 1365–1407 (2002)
Hoff, D.: Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech. 7(3), 315–338 (2005)
Huang, X.D., Li, J., Xin, Z.P.: Blowup criterion for viscous barotropic flows with vacuum states. Commun. Math. Phys. 301(1), 23–35 (2011)
Huang, X.D., Li, J., Xin, Z.P.: Serrin type criterion for the three-dimensional compressible flows. SIAM J. Math. Anal. 43(4), 1872–1886 (2011)
Huang, X.D., Li, J., Xin, Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65, 549–585 (2012)
Kato, T.: Remarks on the Euler and Navier–Stokes equations in $$R^2$$ R 2 . In: Proceedings of Symposia in Pure Mathematics, vol. 45, pp. 1–7. American Mathematical Society, Providence (1986)
Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl. Mat. Meh. 41, 282–291 (1977)
Li, J., Liang, Z.: On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vacuum. J. Math. Pures Appl. (9) 102(4), 640–671 (2014)
Li, J., Xin, Z.: Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows. J. Differ. Equ. 221(2), 275–308 (2006)
Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models. Oxford University Press, New York (1996)
Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models. Oxford University Press, New York (1998)
Luo, Z.: Global existence of classical solutions to two-dimensional Navier–Stokes equations with Cauchy data containing vacuum. Math. Methods Appl. Sci. 37(9), 1333–1352 (2014)
Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)
Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)
Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)
Rozanova, O.: Blow up of smooth solutions to the compressible Navier–Stokes equations with the data highly decreasing at infinity. J. Differ. Equ. 245, 1762–1774 (2008)
Salvi, R., Straskraba, I.: Global existence for viscous compressible fluids and their behavior as $$t\rightarrow \infty $$ t → ∞ . J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 40, 17–51 (1993)
Serre, D.:: Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér. I Math. 303, 639–642 (1986)
Serre, D.: Sur l’équation monodimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math. 303, 703–706 (1986)
Serrin, J.: On the uniqueness of compressible fluid motion. Arch. Rational. Mech. Anal. 3, 271–288 (1959)
Xin, Z.P.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)
Xin, Z.P., Yan, W.: On blowup of classical solutions to the compressible Navier–Stokes equations. Commun. Math. Phys. 321(2), 529–541 (2013)