Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier–Stokes Equations with Vacuum

Jing Li1, Zhouping Xin2
1Institute of Applied Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
2The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

Bergh, J., Lofstrom, J.: Interpolation Spaces, An Introduction. Springer, Berlin (1976)

Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluid. J. Math. Pures Appl. 83, 243–275 (2004)

Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manuscr. Math. 120, 91–129 (2006)

Choe, H.J., Kim, H.: Strong solutions of the Navier–Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190, 504–523 (2003)

Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, New York (2004)

Feireisl, E., Novotny, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

Hoff, D.: Global existence for 1D, compressible, isentropic Navier–Stokes equations with large initial data. Trans. Am. Math. Soc. 303(1), 169–181 (1987)

Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120(1), 215–254 (1995)

Hoff, D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal. 132, 1–14 (1995)

Hoff, D.: Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Commun. Pure Appl. Math. 55(11), 1365–1407 (2002)

Hoff, D.: Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech. 7(3), 315–338 (2005)

Huang, X.D., Li, J., Xin, Z.P.: Blowup criterion for viscous barotropic flows with vacuum states. Commun. Math. Phys. 301(1), 23–35 (2011)

Huang, X.D., Li, J., Xin, Z.P.: Serrin type criterion for the three-dimensional compressible flows. SIAM J. Math. Anal. 43(4), 1872–1886 (2011)

Huang, X.D., Li, J., Xin, Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65, 549–585 (2012)

Kato, T.: Remarks on the Euler and Navier–Stokes equations in $$R^2$$ R 2 . In: Proceedings of Symposia in Pure Mathematics, vol. 45, pp. 1–7. American Mathematical Society, Providence (1986)

Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl. Mat. Meh. 41, 282–291 (1977)

Li, J., Liang, Z.: On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vacuum. J. Math. Pures Appl. (9) 102(4), 640–671 (2014)

Li, J., Xin, Z.: Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows. J. Differ. Equ. 221(2), 275–308 (2006)

Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models. Oxford University Press, New York (1996)

Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models. Oxford University Press, New York (1998)

Luo, Z.: Global existence of classical solutions to two-dimensional Navier–Stokes equations with Cauchy data containing vacuum. Math. Methods Appl. Sci. 37(9), 1333–1352 (2014)

Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

Rozanova, O.: Blow up of smooth solutions to the compressible Navier–Stokes equations with the data highly decreasing at infinity. J. Differ. Equ. 245, 1762–1774 (2008)

Salvi, R., Straskraba, I.: Global existence for viscous compressible fluids and their behavior as $$t\rightarrow \infty $$ t → ∞ . J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 40, 17–51 (1993)

Serre, D.:: Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér. I Math. 303, 639–642 (1986)

Serre, D.: Sur l’équation monodimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math. 303, 703–706 (1986)

Serrin, J.: On the uniqueness of compressible fluid motion. Arch. Rational. Mech. Anal. 3, 271–288 (1959)

Xin, Z.P.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

Xin, Z.P., Yan, W.: On blowup of classical solutions to the compressible Navier–Stokes equations. Commun. Math. Phys. 321(2), 529–541 (2013)

Zlotnik, A.A.: Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations. Differ. Equ. 36, 701–716 (2000)