Global Unique Solvability of the Initial-Boundary Value Problem for the Equations of One-Dimensional Polytropic Flows of Viscous Compressible Multifluids

A. E. Mamontov1, Д. А. Прокудин2
1Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk State University, Lavrentyev prospekt 15, Novosibirsk, Russian Federation, 630090
2Lavrentyev Institute of Hydrodynamics SB RAS, Voronezh State University, Lavrentyev prospekt 15, Novosibirsk, Russian Federation, 630090

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, vol. 22. North-Holland Publishing Co., Amsterdam (1990)

Basov, I.V., Shelukhin, V.V.: On equations of a nonlinear compressible fluid with a discontinuous constitutive law. Sib. Math. J. 40(3), 435–445 (1999)

Dorovsky, V.N., Perepechko, YuV: Theory of the partial melting. Sov. Geol. Geophys. 9, 56–64 (1989)

Frehse, J., Goj, S., Malek, J.: On a Stokes-like system for mixtures of fluids. SIAM J. Math. Anal. 36(4), 1259–1281 (2005)

Frehse, J., Goj, S., Malek, J.: A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum. Appl. Math. 50(6), 527–541 (2005)

Frehse, J., Weigant, W.: On quasi-stationary models of mixtures of compressible fluids. Appl. Math. 53(4), 319–345 (2008)

Giovangigli, V.: Multicomponent Flow Modeling. Birkhäuser, Boston (1999)

Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41(2), 273–282 (1977)

Mamontov, A.E., Prokudin, D.A.: Viscous compressible multi-fluids: modeling and multi-D existence. Methods Appl. Anal. 20(2), 179–195 (2013)

Mamontov, A.E., Prokudin, D.A.: Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids. Izvestiya: Mathematics 78(3), 554–579 (2014)

Mamontov, A.E., Prokudin, D.A.: Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids. Sib. Math. J. 57(6), 1044–1054 (2016)

Mamontov, A.E., Prokudin, D.A.: Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 13, 541–583 (2016)

Mamontov, A.E., Prokudin, D.A.: Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 13, 664–693 (2016)

Mamontov, A.E., Prokudin, D.A.: Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids. Sib. Math. J. 58(1), 113–127 (2017)

Mamontov, A.E., Prokudin, D.A.: Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory. Sib. Electr. Math. Rep. 14, 388–397 (2017)

Mamontov, A.E., Prokudin, D.A.: Modeling viscous compressible barotropic multi-fluid flows. J. Phys. Conf. Ser. 894, 012058 (2017)

Mamontov, A.E., Prokudin, D.A.: Solubility of unsteady equations of multi-component viscous compressible fluids. Izvestiya: Mathematics 82(1), 140–185 (2018)

Mamontov, A.E., Prokudin, D.A.: Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids. J. Math. Sci. 231(2), 227–242 (2018)

Mamontov, A.E., Prokudin, D.A.: Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 15, 631–649 (2018)

Mucha, P.B., Pokorny, M., Zatorska, E.: Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47(5), 3747–3797 (2015)

Nigmatulin, R.I.: Dynamics of Multiphase Media, vol. 1. Hemisphere, N.Y. (1990)

Prokudin, D.A.: Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids. Sib. Electr. Math. Rep. 14, 568–585 (2017)

Prokudin, D.A.: Global solvability of the initial boundary value problem for a model system of one-dimensional equations of polytropic flows of viscous compressible fluid mixtures. J. Phys. Conf. Ser. 894, 012076 (2017)

Prokudin, D.A., Krayushkina, M.V.: Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids. J. Appl. Ind. Math. 10(3), 417–428 (2016)

Rajagopal, K.L., Tao, L.: Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35. World Scientific, River Edge (1995)

Weigant, W.: Non-homogeneous boundary value problems for the Navier–Stokes equations of a viscous gas. Ph. D. Thesis, Barnaul (1992)