Global Unique Solvability of the Initial-Boundary Value Problem for the Equations of One-Dimensional Polytropic Flows of Viscous Compressible Multifluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, vol. 22. North-Holland Publishing Co., Amsterdam (1990)
Basov, I.V., Shelukhin, V.V.: On equations of a nonlinear compressible fluid with a discontinuous constitutive law. Sib. Math. J. 40(3), 435–445 (1999)
Dorovsky, V.N., Perepechko, YuV: Theory of the partial melting. Sov. Geol. Geophys. 9, 56–64 (1989)
Frehse, J., Goj, S., Malek, J.: On a Stokes-like system for mixtures of fluids. SIAM J. Math. Anal. 36(4), 1259–1281 (2005)
Frehse, J., Goj, S., Malek, J.: A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum. Appl. Math. 50(6), 527–541 (2005)
Frehse, J., Weigant, W.: On quasi-stationary models of mixtures of compressible fluids. Appl. Math. 53(4), 319–345 (2008)
Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41(2), 273–282 (1977)
Mamontov, A.E., Prokudin, D.A.: Viscous compressible multi-fluids: modeling and multi-D existence. Methods Appl. Anal. 20(2), 179–195 (2013)
Mamontov, A.E., Prokudin, D.A.: Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids. Izvestiya: Mathematics 78(3), 554–579 (2014)
Mamontov, A.E., Prokudin, D.A.: Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids. Sib. Math. J. 57(6), 1044–1054 (2016)
Mamontov, A.E., Prokudin, D.A.: Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 13, 541–583 (2016)
Mamontov, A.E., Prokudin, D.A.: Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 13, 664–693 (2016)
Mamontov, A.E., Prokudin, D.A.: Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids. Sib. Math. J. 58(1), 113–127 (2017)
Mamontov, A.E., Prokudin, D.A.: Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory. Sib. Electr. Math. Rep. 14, 388–397 (2017)
Mamontov, A.E., Prokudin, D.A.: Modeling viscous compressible barotropic multi-fluid flows. J. Phys. Conf. Ser. 894, 012058 (2017)
Mamontov, A.E., Prokudin, D.A.: Solubility of unsteady equations of multi-component viscous compressible fluids. Izvestiya: Mathematics 82(1), 140–185 (2018)
Mamontov, A.E., Prokudin, D.A.: Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids. J. Math. Sci. 231(2), 227–242 (2018)
Mamontov, A.E., Prokudin, D.A.: Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 15, 631–649 (2018)
Mucha, P.B., Pokorny, M., Zatorska, E.: Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47(5), 3747–3797 (2015)
Nigmatulin, R.I.: Dynamics of Multiphase Media, vol. 1. Hemisphere, N.Y. (1990)
Prokudin, D.A.: Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids. Sib. Electr. Math. Rep. 14, 568–585 (2017)
Prokudin, D.A.: Global solvability of the initial boundary value problem for a model system of one-dimensional equations of polytropic flows of viscous compressible fluid mixtures. J. Phys. Conf. Ser. 894, 012076 (2017)
Prokudin, D.A., Krayushkina, M.V.: Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids. J. Appl. Ind. Math. 10(3), 417–428 (2016)
Rajagopal, K.L., Tao, L.: Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35. World Scientific, River Edge (1995)
Weigant, W.: Non-homogeneous boundary value problems for the Navier–Stokes equations of a viscous gas. Ph. D. Thesis, Barnaul (1992)